TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (392 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (123 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140553 times)
  2. FAT32 Library (73048 times)
  3. Network Ethernet Library (58051 times)
  4. USB Device Library (48224 times)
  5. Network WiFi Library (43833 times)
  6. FT800 Library (43295 times)
  7. GSM click (30360 times)
  8. mikroSDK (28993 times)
  9. PID Library (27119 times)
  10. microSD click (26723 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Thermostat 3 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.12

mikroSDK Library: 2.0.0.0

Category: Temperature & humidity

Downloaded: 213 times

Not followed.

License: MIT license  

Thermostat 3 Click is a general-purpose thermostat Click board™ designed to be used with any temperature sensor based on the MAX31855 sensor design.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Thermostat 3 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Thermostat 3 Click" changes.

Do you want to report abuse regarding "Thermostat 3 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Thermostat 3 Click

Thermostat 3 Click is a general-purpose thermostat Click board™ designed to be used with any temperature sensor based on the MAX31855 sensor design.

thermostat3_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jan 2020.
  • Type : SPI type

Software Support

We provide a library for the Thermostat3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Thermostat3 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void thermostat3_cfg_setup ( thermostat3_cfg_t *cfg );

  • Initialization function.

    THERMOSTAT_RETVAL thermostat3_init ( thermostat3_t ctx, thermostat3_cfg_t cfg );

  • Click Default Configuration function.

    void thermostat3_default_cfg ( thermostat3_t *ctx );

Example key functions :

  • This function enables control of the relay.

    void thermostat3_relay_control ( thermostat3_t *ctx, uint8_t relay_pos );

  • This function returns Fault data Value.

    uint8_t thermostat3_get_fault_data ( temp_vals_t *tmp, uint8_t err );

  • This function returns 14-Bit Thermocouple Temperature Data

    float thermostat3_get_thermocouple_temperature ( temp_vals_t *tmp, uint8_t temp_in );

Examples Description

This application enables usage of the general purpose Thermostat Click to be used with temperature sensors.

The demo application is composed of two sections :

Application Init

Initialization driver init


void application_init ( void )
{
    log_cfg_t log_cfg;
    thermostat3_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    Delay_ms ( 100 );

    //  Click initialization.

    thermostat3_cfg_setup( &cfg );
    THERMOSTAT3_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    thermostat3_init( &thermostat3, &cfg );

    // Power on delay
    Delay_ms ( 200 );
    log_printf( &logger, "---- Start Thermostat 3 ----\r\n" );
}

Application Task

Waits for valid user input and executes functions based on set of valid commands


void application_task ( void )
{
    //  Task implementation.

    float internal_temp;
    float thermocouple_temp;

    thermostat3_process( &thermostat3, &temp_val );

    internal_temp = thermostat3_get_internal_temperature( &temp_val, THERMOSTAT3_TEMP_IN_CELSIUS );
    log_printf( &logger, "# Internal Temperature: %.2f", internal_temp );
    Delay_ms ( 200 );

    thermocouple_temp = thermostat3_get_thermocouple_temperature( &temp_val, THERMOSTAT3_TEMP_IN_CELSIUS );
    log_printf( &logger, "# Thermocouple Temperature: %.2f", thermocouple_temp );
    Delay_ms ( 200 );

    if( thermostat3.relay_flag == 1)
    {
        thermostat3.relay_flag = 0;
        thermostat3_relay_control( &thermostat3, THERMOSTAT3_RELAY_OFF );
        log_printf( &logger, "# Relay OFF\r\n" );
    }
    else
    {
        thermostat3.relay_flag = 1;
        thermostat3_relay_control( &thermostat3, THERMOSTAT3_RELAY_ON );
        log_printf( &logger, "# Relay ON\r\n" );
    }
    Delay_ms ( 200 );

    if( thermostat3.fault_flag == 1 )
    {
        thermostat3.fault_flag = 0;
        log_printf( &logger, "# Fault status -- OFF\r\n" );
    }
    else
    {
        thermostat3.fault_flag = 1;
        log_printf( &logger, "# Fault status -- ON\r\n" );
    }
    Delay_ms ( 200 );

    if( thermostat3.fault_flag == 1 )
        {
            thermostat3.f_error++;
            if( thermostat3.f_error > 3 )
            {
                thermostat3.f_error = 0;
            }
            display_fault( thermostat3.f_error );

            thermostat3.fault_status = thermostat3_get_fault_data( &temp_val, 0x01 << thermostat3.f_error );

            if ( thermostat3.fault_status == 1 )
            {
                log_printf( &logger, " -- ERROR\r\n" );
            }
            else
            {
                log_printf( &logger, " -- OK\r\n" );
            }
        }
}

Note

  • Additional Functions : -void _displayFault( uint8_t f_error ) - Display fault

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Thermostat3

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

6DOF IMU 15 Click

0

6DOF IMU 15 Click is a compact add-on board that contains a 6-axis MEMS motion tracking device combining a 3-axis gyroscope and a 3-axis accelerometer.

[Learn More]

RTC 18 Click

0

RTC 18 Click is a compact add-on board that accurately keeps the time of a day. This board features the RV-3032-C7, an I2C-configurable real-time clock module that incorporates an integrated CMOS circuit and an XTAL from Micro Crystal AG. The RV-3032-C7 is a temperature compensated RTC with premium accuracy (0.22 sec/day) and extremely low power consumption, allowing it to be used with a single button cell battery for an extended period. It can measure temperature with a typical accuracy of ±1°C and a resolution of 0.0625°C/step with a programmable alarm on top and bottom temperature limits. It features standard RTC functions with automatic leap year correction, and standard interrupt for Periodic Countdown Timer and Periodic Time Update (seconds, minutes), date/hour/minute alarm, and an external event.

[Learn More]

UV click

5

With UV click you can measure Ultraviolet light intensity both indoors and outdoors. The photodiode on the ML8511 IC is sensitive to UV-A (365–315 nm) and UV-B (315-280) rays. You can use UV click to design devices that protect the user against excesive sun exposure, or for industrial purposes where UV light is used for sterilization.

[Learn More]