TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142095 times)
  2. FAT32 Library (75359 times)
  3. Network Ethernet Library (59524 times)
  4. USB Device Library (49549 times)
  5. Network WiFi Library (45347 times)
  6. FT800 Library (44975 times)
  7. GSM click (31485 times)
  8. mikroSDK (30536 times)
  9. microSD click (27860 times)
  10. PID Library (27631 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Proximity 8 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: Proximity

Downloaded: 465 times

Not followed.

License: MIT license  

Proximity 8 Click is a close-range proximity sensing Click board™, equipped with the VCNL36687S, a very accurate and power-efficient proximity sensor (PS) with VCSEL.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Proximity 8 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Proximity 8 Click" changes.

Do you want to report abuse regarding "Proximity 8 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Proximity 8 Click

Proximity 8 Click is a close-range proximity sensing Click board™, equipped with the VCNL36687S, a very accurate and power-efficient proximity sensor (PS) with VCSEL.

proximity8_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : I2C type

Software Support

We provide a library for the Proximity8 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Proximity8 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void proximity8_cfg_setup ( proximity8_cfg_t *cfg );

  • Initialization function.

    PROXIMITY8_RETVAL proximity8_init ( proximity8_t ctx, proximity8_cfg_t cfg );

  • Click Default Configuration function.

    void proximity8_default_cfg ( proximity8_t *ctx );

Example key functions :

  • This function reads data from the desired register.

    void proximity8_generic_read ( proximity8_t ctx, uint8_t reg, uint8_t data_buf );

  • This function writes data to the desired register.

    void proximity8_generic_write ( proximity8_t ctx, uint8_t reg, uint8_t data_buf, uint8_t len );

  • This function returns Interrupt state.

    uint8_t proximity8_get_interrupt_state( proximity8_t *ctx );

Examples Description

This application enables usage of the proximity sensor

The demo application is composed of two sections :

Application Init

Initialization Driver init, test comunication and configuration chip for measurement


void application_init ( void )
{
    log_cfg_t log_cfg;
    proximity8_cfg_t cfg;
    uint16_t tmp;
    uint16_t w_temp;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    proximity8_cfg_setup( &cfg );
    PROXIMITY8_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    proximity8_init( &proximity8, &cfg );

    //Test Communication

    proximity8_generic_read( &proximity8, PROXIMITY8_REG_DEVICE_ID, &tmp );

    if( tmp == PROXIMITY8_DEVICE_ID )
    {
        log_printf( &logger, "---- Comunication OK!!! ----\r\n" );
    }
    else
    {
        log_printf( &logger, "---- Comunication ERROR!!! ----\r\n" );
        while( 1 );
    }

    proximity8_default_cfg( &proximity8 );

    log_printf( &logger, "---- Start measurement ----\r\n" );
}

Application Task

Reads Proximity data and this data logs to the USBUART every 1500ms.


void application_task ( void )
{
    //  Task implementation.

   uint16_t proximity;

   proximity8_generic_read( &proximity8, PROXIMITY8_REG_PROX_DATA, &proximity );
   proximity = ( proximity & 0x7FFF );

   log_printf( &logger, " Proximity data: %d\r\n", proximity );

   log_printf( &logger, "-------------------------\r\n" );
   Delay_ms ( 1000 );
   Delay_ms ( 500 );
} 

Note

The reading value and proximity of the data depend on the configuration.

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Proximity8

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Flame click

5

Flame click is a fire detection solution sensitive only to infrared light. To use it as a fire alarm, set up the exact detection threshold through the onboard potentiometer (once reached, the click will send an interrupt to the target board MCU through the mikroBUS INT pin).

[Learn More]

UT-S 7 SEG R click

0

UT-S 7 SEG R click uses two SMD ultra-thin DSM7UA 7-SEG LED displays, made with the patented technology that delivers thickness of only 2.1 mm. These displays are driven by the MAX6969, a constant current LED integrated driver from Maxim Integrated, which uses the SPI serial interface for communication.

[Learn More]

Brushless 10 Click

0

Brushless 10 Click is a compact add-on board that provides precise control over brushless DC motors. This board features the TC78B016FTG, a 3-phase sine-wave PWM driver from Toshiba Semiconductor. The TC78B016FTG features Intelligent Phase Control (InPAC) for automatic motor phase adjustment, eliminating manual calibration, supporting an external power supply from 6V to 30V, and adjusting current output up to 3A. It also includes various control and diagnostic features such as rotational speed output, brake function, speed command, and safety detections with visual indicators. The onboard DAC also offers additional tunability for motor control enhancements like lead angle control, output duty cycle, motor lockout, and PWM frequency selection.

[Learn More]