We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.18
mikroSDK Library: 2.0.0.0
Category: RTC
Downloaded: 310 times
Not followed.
License: MIT license
RTC 10 Click is a real-time clock module which has an extremely low power consumption, allowing it to be used with a single button cell battery, for an extended period of time.
Do you want to subscribe in order to receive notifications regarding "RTC 10 Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "RTC 10 Click" changes.
Do you want to report abuse regarding "RTC 10 Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
3470_rtc_10_click.zip [611.73KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
RTC 10 Click is a real-time clock module which has an extremely low power consumption, allowing it to be used with a single button cell battery, for an extended period of time.
We provide a library for the Rtc10 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.
This library contains API for Rtc10 Click driver.
Config Object Initialization function.
void rtc10_cfg_setup ( rtc10_cfg_t *cfg );
Initialization function.
RTC10_RETVAL rtc10_init ( rtc10_t ctx, rtc10_cfg_t cfg );
Click Default Configuration function.
void rtc10_default_cfg ( rtc10_t *ctx );
Generic write function.
oid rtc10_generic_write ( rtc10_t ctx, uint8_t reg, uint8_t data_buf, uint8_t len );
Generic read function.
void rtc10_generic_read ( rtc10_t ctx, uint8_t reg, uint8_t data_buf, uint8_t len );
Hardware reset function.
void rtc10_hw_reset ( rtc10_t *ctx );
This application is a real-time clock module.
The demo application is composed of two sections :
Initialization driver enable's - I2C, hardware reset, set start time and date, enable counting also, write log.
void application_init ( void )
{
log_cfg_t log_cfg;
rtc10_cfg_t cfg;
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, "---- Application Init ----" );
// Click initialization.
rtc10_cfg_setup( &cfg );
RTC10_MAP_MIKROBUS( cfg, MIKROBUS_1 );
rtc10_init( &rtc10, &cfg );
Delay_ms ( 1000 );
sec_flag = 0xFF;
log_printf( &logger, "------------------- \r\n" );
log_printf( &logger, " Hardware Reset \r\n" );
rtc10_hw_reset( &rtc10 );
Delay_ms ( 1000 );
// Set Time: 23h, 59 min and 50 sec
rtc10_set_time( &rtc10, 23, 59, 50 );
Delay_ms ( 10 );
// Set Date: 6 ( Day of the week: Saturday ), 31 ( day ), 8 ( month ) and 2019 ( year )
rtc10_set_date( &rtc10, 6, 31, 8, 2019 );
Delay_ms ( 100 );
log_printf( &logger, "------------------- \r\n" );
log_printf( &logger, " Enable Counting \r\n" );
log_printf( &logger, "------------------- \r\n" );
log_printf( &logger, " Start RTC \r\n" );
log_printf( &logger, "------------------- \r\n" );
rtc10_enable_counting( &rtc10 );
Delay_ms ( 100 );
}
This is an example which demonstrates the use of RTC 10 Click board. RTC 10 Click communicates with register via I2C interface, set time and date, enable counting and display time and date values, also, display temperature value for every 1 sec. Results are being sent to the Usart Terminal where you can track their changes. All data logs write on Usart Terminal changes for every 1 sec.
void application_task ( void )
{
uint8_t i;
uint8_t time_hours = 0;
uint8_t time_minutes = 0;
uint8_t time_seconds = 0;
uint8_t day_of_the_week = 0;
uint8_t date_day = 0;
uint8_t date_month = 0;
uint8_t date_year = 0;
float temperature;
rtc10_get_time( &rtc10, &time_hours, &time_minutes, &time_seconds );
Delay_ms ( 100 );
rtc10_get_date( &rtc10, &day_of_the_week, &date_day, &date_month, &date_year );
Delay_ms ( 100 );
if ( sec_flag != time_seconds )
{
log_printf( &logger, " \r\n\n Time: %u:%u:%u ", (uint16_t)time_hours, (uint16_t)time_minutes, (uint16_t)time_seconds );
log_printf( &logger, "Date: %u. %u. 20%u. ", (uint16_t)date_day, (uint16_t)date_month, (uint16_t)date_year );
display_day_of_the_week( day_of_the_week );
if ( time_seconds == 0 )
{
temperature = rtc10_get_temperature( &rtc10 );
log_printf( &logger, "\r\n\n Temp.:%.2f C", temperature);
}
log_printf( &logger, "--------------------------------------------" );
sec_flag = time_seconds;
}
}
The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.
Other mikroE Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.