TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141966 times)
  2. FAT32 Library (75171 times)
  3. Network Ethernet Library (59423 times)
  4. USB Device Library (49419 times)
  5. Network WiFi Library (45228 times)
  6. FT800 Library (44821 times)
  7. GSM click (31390 times)
  8. mikroSDK (30373 times)
  9. microSD click (27741 times)
  10. PID Library (27596 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Flash 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: FLASH

Downloaded: 502 times

Not followed.

License: MIT license  

Flash 2 Click features a 64 Mbit Flash memory IC, manufactured by using the proprietary high-performance CMOS Super-Flash® technology, which allows the Flash 2 Click to withstand up to 100,000 write cycles, with the data retention period of 100 years, which is considerably longer than any other memory module of this type. The flash memory IC used on this Click board™ features Serial Flash Discoverable Parameters (SFDP) mode, used to retrieve the advanced information from the device, such as the operating characteristics, structure and vendor specified information, memory size, operating voltage, timing information, and more.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Flash 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Flash 2 Click" changes.

Do you want to report abuse regarding "Flash 2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Flash 2 Click

Flash 2 Click features a 64 Mbit Flash memory IC, manufactured by using the proprietary high-performance CMOS Super-Flash® technology, which allows the Flash 2 Click to withstand up to 100,000 write cycles, with the data retention period of 100 years, which is considerably longer than any other memory module of this type. The flash memory IC used on this Click board™ features Serial Flash Discoverable Parameters (SFDP) mode, used to retrieve the advanced information from the device, such as the operating characteristics, structure and vendor specified information, memory size, operating voltage, timing information, and more.

flash2_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Feb 2020.
  • Type : SPI type

Software Support

We provide a library for the Flash2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Flash2 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void flash2_cfg_setup ( flash2_cfg_t *cfg );

  • Initialization function.

    FLASH2_RETVAL flash2_init ( flash2_t ctx, flash2_cfg_t cfg );

  • Click Default Configuration function.

    void flash2_default_cfg ( flash2_t *ctx );

Example key functions :

  • The Global Block-Protection Unlock instruction clears all

  • write-protection bits in the Block-Protection register,

  • except for those bits that have been locked down with the

  • nVWLDR command.

    void flash2_global_block_unlock( flash2_t *ctx )

  • The Chip-Erase instruction clears all bits in the device

  • to ‘1.’ The Chip-Erase instruction is ignored if any of the

  • memory area is protected.

    void flash2_chip_erase( flash2_t *ctx )

  • The Read instruction, 03H, is supported in SPI bus pro-

  • tocol only with clock frequencies up to 40 MHz. This

  • command is not supported in SQI bus protocol. The

  • device outputs the data starting from the specified

  • address location, theand Configuration n continuously streams the data

  • output through all addresses until terminated by a low-

  • to-high transition on CE#. The internal address pointer

  • will automatically increment until the highest memory

  • address is reached. Once the highest memory address

  • is reached, the address pointer will automatically return

  • to the beginning (wrap-around) of the address space.

    void flash2_read_generic( flash2_t ctx, uint32_t address, uint8_t buffer, uint32_t data_count )

Examples Description

This example demonstrates the process of writing and reading data from Flash 2 Click memory.

The demo application is composed of two sections :

Application Init

Flash Driver Initialization, initialization of Click by setting mikorBUS to approprieate logic levels, performing global block unlock and chip erase functions.


void application_init ( void )
{
    log_cfg_t log_cfg;
    flash2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    flash2_cfg_setup( &cfg );
    FLASH2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    flash2_init( &flash2, &cfg );
    Delay_ms ( 300 );
    flash2_global_block_unlock( &flash2 );
    Delay_ms ( 400 );
    flash2_chip_erase( &flash2 );
    Delay_ms ( 300 );
}

Application Task

Writing data to Click memory and displaying the read data via UART.


void application_task ( void )
{
    log_printf( &logger, "Writing MikroE to flash memory, from address 0x015015:\r\n" );
    flash2_write_generic( &flash2, 0x015015, &wr_data[ 0 ], 9 );
    log_printf( &logger, "Reading 9 bytes of flash memory, from address 0x015015:\r\n" );
    flash2_read_generic( &flash2, 0x015015, &rd_data[ 0 ], 9 );
    log_printf( &logger, "Data read: %s\r\n", rd_data );
    Delay_ms ( 1000 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Flash2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

RMS to DC 2 Click

0

RMS to DC 2 Click is a compact add-on board that converts the RMS of the input signal into a DC voltage. This board features the AD8436, a low-cost, low-power, true RMS-to-DC converter from Analog Devices. The AD8436 is a translinear precision, low-power, true RMS-to-DC converter that delivers true RMS or average rectified value of AC waveform. It features high accuracy, a wide dynamic input range (100μV rms to 3V rms), a wide bandwidth of up to 1MHz, and more. This Click board™ makes the perfect solution for the development of various true RMS digital multimeter applications, panel meters and gauges, AC + DC measurement applications, a true RMS measurement of an audio signal, and other similar applications that require accurate RMS value readings.

[Learn More]

RN4871 click

6

RN4871 click carries the RN4871 Bluetooth® 4.2 low energy module from Microchip. The click is designed to run on a 3.3V power supply. It communicates with the target microcontroller over UART interface, with additional functionality provided by the following pins on the mikroBUS™ line: RST, CS and INT.

[Learn More]

IPD 2015 Click

0

IPD Click is a compact add-on board for controlling inductive and resistive loads in industrial automation and other demanding applications. This board features the TPD2015FN, an 8-channel high-side switch with MOSFET outputs from Toshiba Semiconductor.

[Learn More]