TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (385 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139845 times)
  2. FAT32 Library (72210 times)
  3. Network Ethernet Library (57392 times)
  4. USB Device Library (47740 times)
  5. Network WiFi Library (43364 times)
  6. FT800 Library (42700 times)
  7. GSM click (29980 times)
  8. mikroSDK (28440 times)
  9. PID Library (26989 times)
  10. microSD click (26398 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Flash 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: FLASH

Downloaded: 283 times

Not followed.

License: MIT license  

Flash 2 Click features a 64 Mbit Flash memory IC, manufactured by using the proprietary high-performance CMOS Super-Flash® technology, which allows the Flash 2 Click to withstand up to 100,000 write cycles, with the data retention period of 100 years, which is considerably longer than any other memory module of this type. The flash memory IC used on this Click board™ features Serial Flash Discoverable Parameters (SFDP) mode, used to retrieve the advanced information from the device, such as the operating characteristics, structure and vendor specified information, memory size, operating voltage, timing information, and more.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Flash 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Flash 2 Click" changes.

Do you want to report abuse regarding "Flash 2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Flash 2 Click

Flash 2 Click features a 64 Mbit Flash memory IC, manufactured by using the proprietary high-performance CMOS Super-Flash® technology, which allows the Flash 2 Click to withstand up to 100,000 write cycles, with the data retention period of 100 years, which is considerably longer than any other memory module of this type. The flash memory IC used on this Click board™ features Serial Flash Discoverable Parameters (SFDP) mode, used to retrieve the advanced information from the device, such as the operating characteristics, structure and vendor specified information, memory size, operating voltage, timing information, and more.

flash2_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Feb 2020.
  • Type : SPI type

Software Support

We provide a library for the Flash2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Flash2 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void flash2_cfg_setup ( flash2_cfg_t *cfg );

  • Initialization function.

    FLASH2_RETVAL flash2_init ( flash2_t ctx, flash2_cfg_t cfg );

  • Click Default Configuration function.

    void flash2_default_cfg ( flash2_t *ctx );

Example key functions :

  • The Global Block-Protection Unlock instruction clears all

  • write-protection bits in the Block-Protection register,

  • except for those bits that have been locked down with the

  • nVWLDR command.

    void flash2_global_block_unlock( flash2_t *ctx )

  • The Chip-Erase instruction clears all bits in the device

  • to ‘1.’ The Chip-Erase instruction is ignored if any of the

  • memory area is protected.

    void flash2_chip_erase( flash2_t *ctx )

  • The Read instruction, 03H, is supported in SPI bus pro-

  • tocol only with clock frequencies up to 40 MHz. This

  • command is not supported in SQI bus protocol. The

  • device outputs the data starting from the specified

  • address location, theand Configuration n continuously streams the data

  • output through all addresses until terminated by a low-

  • to-high transition on CE#. The internal address pointer

  • will automatically increment until the highest memory

  • address is reached. Once the highest memory address

  • is reached, the address pointer will automatically return

  • to the beginning (wrap-around) of the address space.

    void flash2_read_generic( flash2_t ctx, uint32_t address, uint8_t buffer, uint32_t data_count )

Examples Description

This example demonstrates the process of writing and reading data from Flash 2 Click memory.

The demo application is composed of two sections :

Application Init

Flash Driver Initialization, initialization of Click by setting mikorBUS to approprieate logic levels, performing global block unlock and chip erase functions.


void application_init ( void )
{
    log_cfg_t log_cfg;
    flash2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    flash2_cfg_setup( &cfg );
    FLASH2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    flash2_init( &flash2, &cfg );
    Delay_ms ( 300 );
    flash2_global_block_unlock( &flash2 );
    Delay_ms ( 400 );
    flash2_chip_erase( &flash2 );
    Delay_ms ( 300 );
}

Application Task

Writing data to Click memory and displaying the read data via UART.


void application_task ( void )
{
    log_printf( &logger, "Writing MikroE to flash memory, from address 0x015015:\r\n" );
    flash2_write_generic( &flash2, 0x015015, &wr_data[ 0 ], 9 );
    log_printf( &logger, "Reading 9 bytes of flash memory, from address 0x015015:\r\n" );
    flash2_read_generic( &flash2, 0x015015, &rd_data[ 0 ], 9 );
    log_printf( &logger, "Data read: %s\r\n", rd_data );
    Delay_ms ( 1000 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Flash2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Smart DOF Click

0

SmartDOF Click features a highly advanced integrated system-in-package (SiP) solution with three different sensors on-chip: triaxial accelerometer, magnetometer, and triaxial gyroscope are all integrated on the same die, along with the powerful 32-bit ARM® Cortex®-M0+ MCU. Thanks to the integrated MCU, the BN080 SiP provides extensive signal processing.

[Learn More]

Alcohol 2 click

5

Alcohol 2 click is a very accurate ethanol gas sensor Click board, equipped with the SPEC amperometric gas sensor which electrochemically reacts with the ethanol.

[Learn More]

Magnetic Rotary 6 Click

0

Magnetic Rotary 6 Click is a compact add-on board for accurate magnet-position sensing. This board features the AS5247U, an SPI-configurable high-resolution dual rotary position sensor for fast absolute angle measurement over a full 360-degree range from ams AG. The AS5047D is equipped with revolutionary integrated dynamic angle error compensation (DAEC™) with almost 0 latency and offers a robust design that suppresses the influence of any homogenous external stray magnetic field. It also comes with onboard headers reserved for incremental and commutation signals of their respective A/B/I and U/V/W signals, with a maximum resolution of 16384 steps / 4096 pulses per revolution, alongside embedded self-diagnostics features.

[Learn More]