TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141818 times)
  2. FAT32 Library (74952 times)
  3. Network Ethernet Library (59310 times)
  4. USB Device Library (49305 times)
  5. Network WiFi Library (45103 times)
  6. FT800 Library (44672 times)
  7. GSM click (31285 times)
  8. mikroSDK (30209 times)
  9. microSD click (27657 times)
  10. PID Library (27562 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Flash 3 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: FLASH

Downloaded: 450 times

Not followed.

License: MIT license  

Flash 3 Click is a mikroBUS add-on board for adding more Flash Memory to your target board microcontroller. It carries an ISSI IS25LP128 IC with 128 Mbit capacity.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Flash 3 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Flash 3 Click" changes.

Do you want to report abuse regarding "Flash 3 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog

Flash 3 Click

Flash 3 Click is a mikroBUS add-on board for adding more Flash Memory to your target board microcontroller. It carries an ISSI IS25LP128 IC with 128 Mbit capacity.

flash3_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : dec 2019.
  • Type : SPI type

Software Support

We provide a library for the Flash3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Flash3 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void flash3_cfg_setup ( flash3_cfg_t *cfg );

  • Initialization function.

    FLASH3_RETVAL flash3_init ( flash3_t ctx, flash3_cfg_t cfg );

  • Generic transfer function.

    void flash3_generic_transfer ( flash3_t ctx, spi_master_transfer_data_t block );

Example key functions :

  • Pause function.

    void flash3_pause ( flash3_t *ctx );

  • Unpause function.

    void flash3_unpause ( flash3_t *ctx );

  • Unpause function.

    void flash3_unpause ( flash3_t *ctx );

Examples Description

This applicaion adding more flash memory.

The demo application is composed of two sections :

Application Init

Initalizes device, Flash 3 Click board and makes an initial log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    flash3_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    flash3_cfg_setup( &cfg );
    FLASH3_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    flash3_init( &flash3, &cfg );

    Delay_ms ( 100 );
    log_printf( &logger, "------------------- \r\n" );
    log_printf( &logger, "  Flash  3  Click  \r\n" );
    log_printf( &logger, "-------------------\r\n" );
    flash3_setting( &flash3 );
    Delay_ms ( 100 );
    log_printf( &logger, "   Initialized     \r\n" );
    log_printf( &logger, "------------------- \r\n" );
}

Application Task

This is an example that shows the capabilities of the Flash 3 Click by writing into memory array of a Flash 3 Click board and reading same data from memory array.


void application_task ( void )
{
    char val_in[ 8 ] = { 0x4D, 0x49, 0x4B, 0x52, 0x4F, 0x45, 0x00 };
    char val_out[ 8 ] = { 0 };

    log_printf( &logger, "\r\n ____________________ \r\n" );
    log_printf( &logger, "Begin demonstration! \r\n\r\n" );


    log_printf( &logger, "Writing : %s\r\n", val_in );
    flash3_write( &flash3, 0x000000, &val_in[ 0 ], 6 );
    Delay_ms ( 100 );
    log_printf( &logger, "------------------ \r\n" );

    log_printf( &logger, "Reading : %s\r\n", val_in );
    flash3_normal_read( &flash3, 0x000000, &val_in[ 0 ], 6 );
    Delay_ms ( 100 );
    log_printf( &logger, "------------------ \r\n" );

    log_printf( &logger, "Erasing... \r\n" );
    flash3_sector_erase( &flash3, 0x000000 );
    Delay_ms ( 300 );
    log_printf( &logger, "Erased!" );
    Delay_ms ( 100 );
    log_printf( &logger, "------------------ \r\n"  );

    log_printf( &logger, "Reading : %s\r\n", val_out );
    flash3_fast_read( &flash3, 0x000000, &val_out[ 0 ], 6 );
    Delay_ms ( 100 );
    log_printf( &logger, "------------------ \r\n" );

    log_printf( &logger, "Demonstration over!" );
    log_printf( &logger, "\r\n ___________________ \r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Flash3

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Thermo 5 click

12

THERMO 5 click measures temperature in default range of 0°C to 127°C and extended range of -64°C to 191°C with ±1°C accuracy. It carries the EMC1414 temperature sensor. The click is designed to run on a 3.3V power supply.

[Learn More]

4G LTE-NA Click

0

4G LTE Click is an LTE Cat 1 multimode cellular network solution, featuring the compact LARA-R2 series modem from u-blox. This module supports up two LTE bands. It also features a full range of options for the high speed cellular networking and communication, such as the network indication, full embedded TCP/UDP stack, HTTP and HTTPS transfer protocols, IPv4/IPv6 dual-stack support, secondary antenna for the RX diversity, antenna detection, jamming signal detection, embedded TLS 1.2 protocol for the improved security and more. 4G LARA Click can achieve data rates up to 10.3 Mbps/5.2 Mbps (downlink/uplink).

[Learn More]

MCP251863 Click

0

MCP251863 Click is a compact add-on board representing a complete CAN solution used as a control node in a CAN network. This board features the MCP251863, IC representing a compact solution with a controller and a transceiver in one package, the MCP2518FD and ATA6563 from Microchip. The ATA6563, a low-level physical layer IC (PHY), provides a physical connection with the CAN bus itself, while the CAN controller MCP2518FD represents an interface between the MCU and the PHY. It features three operating modes with dedicated fail-safe features, remote wake-up via CAN, and ideally passive behavior when powered off on the CAN bus. This Click board™ is suitable for developing a wide range of automotive diagnostic applications, even on MCUs that don’t support CAN interface.

[Learn More]