TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (404 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141112 times)
  2. FAT32 Library (73906 times)
  3. Network Ethernet Library (58554 times)
  4. USB Device Library (48725 times)
  5. Network WiFi Library (44376 times)
  6. FT800 Library (43977 times)
  7. GSM click (30721 times)
  8. mikroSDK (29478 times)
  9. PID Library (27304 times)
  10. microSD click (27132 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

DC Motor 11 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.12

mikroSDK Library: 2.0.0.0

Category: Brushed

Downloaded: 270 times

Not followed.

License: MIT license  

DC Motor 11 Click is a brushed DC motor driver with the current limiting and current sensing.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "DC Motor 11 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "DC Motor 11 Click" changes.

Do you want to report abuse regarding "DC Motor 11 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


DC Motor 11 Click

DC Motor 11 Click is a brushed DC motor driver with the current limiting and current sensing. It is based on the DRV8830, an integrated H-Bridge driver IC, optimized for motor driving applications.

dcmotor11_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jan 2020.
  • Type : I2C type

Software Support

We provide a library for the DcMotor11 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for DcMotor11 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void dcmotor11_cfg_setup ( dcmotor11_cfg_t *cfg );

  • Initialization function.

    DCMOTOR11_RETVAL dcmotor11_init ( dcmotor11_t ctx, dcmotor11_cfg_t cfg );

Example key functions :

  • Motor Control

    void dcmotor11_control ( dcmotor11_t *ctx, uint8_t dir, uint8_t speed );

  • Get Fault

    uint8_t dcmotor11_get_fault ( dcmotor11_t *ctx );

  • Interrupt state on the INT pin

    uint8_t dcmotor11_get_interrupt_state ( dcmotor11_t *ctx );

Examples Description

This application is motor driver with the current limiting and current sensing.

The demo application is composed of two sections :

Application Init

Initialization driver init and sets first motor settings.


void application_init ( void )
{
    log_cfg_t log_cfg;
    dcmotor11_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    dcmotor11_cfg_setup( &cfg );
    DCMOTOR11_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    dcmotor11_init( &dcmotor11, &cfg );

   dcmotor11_get_fault( &dcmotor11 );

    /* Start settings */
    motor_dir = DCMOTOR11_DIRECTION_FORWARD;
    motor_speed = DCMOTOR11_VSET_480mV;
    dcmotor11_control( &dcmotor11, DCMOTOR11_DIRECTION_FORWARD, motor_speed );
}

Application Task

Waits for valid user input and executes functions based on set of valid commands.


void application_task ( void )
{
    /* Speed increase */
    motor_speed += 4;
    if ( motor_speed >= DCMOTOR11_VSET_4820mV )
    {
        log_printf( &logger, "---- MAX SPEED ---- \r\n" );
        motor_speed = DCMOTOR11_VSET_4820mV;
        dcmotor11_control( &dcmotor11, motor_dir, motor_speed );
    }
    else
    {
        log_printf( &logger, "---- Speed increase ---- \r\n" );
        log_printf( &logger, " MOTOR SPEED: %d \r\n", motor_speed );

        dcmotor11_control( &dcmotor11, motor_dir, motor_speed );
    }

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    /* Speed decrease */
    motor_speed -= 4;
    if ( motor_speed < DCMOTOR11_VSET_480mV )
    {
        log_printf( &logger, "---- MIN SPEED ---- \r\n" );
        motor_speed = DCMOTOR11_VSET_480mV;
    }
    else
    {
        log_printf( &logger, "---- Speed decrease ---- \r\n");
        log_printf( &logger, " MOTOR SPEED: %d \r\n", motor_speed );

        dcmotor11_control( &dcmotor11, motor_dir, motor_speed );
    }

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    /* Stop / Start */
    if( f_motor_state == 1 )
    {
        log_printf( &logger,"---- Stop Motor!!! ---- \r\n" );
        f_motor_state = 0;
        dcmotor11_stop( &dcmotor11 );
    }
    else
    {
        log_printf( &logger,"---- Start Motor ---- \r\n" );
        f_motor_state = 1;
        motor_speed = DCMOTOR11_VSET_480mV;
        dcmotor11_control( &dcmotor11, motor_dir, motor_speed );
    }

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    /* Direction - Forward / Backword */
    if ( motor_dir == 2 )
    {
        log_printf( &logger,"---- Direction - [FORWARD] ---- \r\n" );
        motor_dir = 1;
        dcmotor11_control( &dcmotor11, motor_dir, motor_speed );
    }
    else
    {
        log_printf( &logger,"---- Direction - [BACKWARD] ---- \r\n" );
        motor_dir = 2;
        dcmotor11_control( &dcmotor11, motor_dir, motor_speed );
    }
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.DcMotor11

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

GSM 3 Click

0

GSM3 Click is a complete quad-band GSM cellular network communication solution, featuring the SIM800H-BT, a quad-band 2G GSM/GPRS module. This module is GSM Phase 2/2+ compliant, featuring a full set of options for the cellular networking and communication. It has a network status indication, jamming detection, embedded internet protocols including TCP/IP, UDP, FTP, PPP, HTTP, E-mail, MMS, and more. It also features advanced voice/audio functions, including the FM radio interface. The GPRS multislot class 12 implementation allows 4 uplink and 4 downlink slots, with 5 slots open in total.

[Learn More]

DC Motor 3 click

1

DC Motor 3 click is a mikroBUS add-on board with a Toshiba TB6549FG full-bridge driver for direct current motors. The IC is capable of outputting currents of up to 3.5 A with 30V, making it suitable for high-power motors. The click communicates with the target MCU through the mikroBUS PWM pin. Designed to use a 3.3 power supply only.

[Learn More]

Stepper 19 Click

0

Stepper 19 Click is a compact add-on board for precise control over stepper motors. This board features the DRV8424, a stepper motor driver from Texas Instruments designed to drive both industrial and consumer stepper motors. The DRV8424 has dual N-channel power MOSFET H-bridge drivers, a microstepping indexer, and integrated current sensing, eliminating the need for external power sense resistors. Operating on a 5V to 30V external power supply, the DRV8424 can deliver up to 2.5A of full-scale output current, with an internal PWM current regulation scheme that includes smart tune, slow, and mixed decay options to optimize performance. Ideal for applications in multichannel system monitoring, robotics, precision positioning, and automated manufacturing processes, this Click board™ appears as a versatile solution for sophisticated stepper motor control.

[Learn More]