TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (392 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (123 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140553 times)
  2. FAT32 Library (73048 times)
  3. Network Ethernet Library (58051 times)
  4. USB Device Library (48223 times)
  5. Network WiFi Library (43833 times)
  6. FT800 Library (43295 times)
  7. GSM click (30360 times)
  8. mikroSDK (28993 times)
  9. PID Library (27119 times)
  10. microSD click (26722 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Flash 5 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.21

mikroSDK Library: 2.0.0.0

Category: FLASH

Downloaded: 407 times

Not followed.

License: MIT license  

Flash 5 Click is a perfect solution for the mass storage option in various embedded applications.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Flash 5 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Flash 5 Click" changes.

Do you want to report abuse regarding "Flash 5 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Flash 5 Click

Flash 5 Click is a perfect solution for the mass storage option in various embedded applications.

flash5_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : SPI type

Software Support

We provide a library for the Flash5 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Flash5 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void flash5_cfg_setup ( flash5_cfg_t *cfg );

  • Initialization function.

    FLASH5_RETVAL flash5_init ( flash5_t ctx, flash5_cfg_t cfg );

Example key functions :

  • Function for setting page read

    void flash5_page_read ( flash5_t *ctx, uint16_t page_num );

  • Function for loading one page

    void flash5_page_load_memory ( flash5_t ctx, uint16_t column_addr, uint8_t data_buf, uint16_t buf_size );

  • Function for writing status data

    void flash5_write_status_data ( flash5_t *ctx, uint8_t status_cmd, uint8_t status_addr, uint8_t status_data );

Examples Description

This application is for storing mass storage.

The demo application is composed of two sections :

Application Init

Initializes driver, resets device, erasing one page of memory, tests communication and configures device.


void application_init ( void )
{
    log_cfg_t log_cfg;
    flash5_cfg_t cfg;
    uint8_t device_check = 0;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    flash5_cfg_setup( &cfg );
    FLASH5_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    flash5_init( &flash5, &cfg );

    log_printf( &logger, " - Reseting device... \r\n" );

    flash5_software_reset( &flash5 );
    Delay_ms ( 1000 );

    log_printf( &logger, " - Erasing memory... \r\n" );   

    flash5_send_cmd( &flash5, FLASH5_CMD_WRITE_ENABLE );
    flash5_erase_page_data( &flash5, 0x0001 );

    device_check = flash5_device_id_check( &flash5 );

    if ( device_check == FLASH5_DEVICE_OK )
    {
        log_printf( &logger, " - Device OK \r\n" );  
    }
    else
    {
        log_printf( &logger, " - Device Error \r\n" );  
        for( ; ; );
    }
    Delay_ms ( 100 );

    log_printf( &logger, " - Configuring device \r\n" );  

    flash5_write_status_data( &flash5, FLASH5_CMD_WRITE_REG_STATUS1, FLASH5_REG_STATUS_1, FLASH5_RS1_WRITE_PROTECTION_DISABLE | 
                                                                                          FLASH5_RS1_SRP1_ENABLE );
    flash5_write_status_data( &flash5, FLASH5_CMD_WRITE_REG_STATUS1, FLASH5_REG_STATUS_1, FLASH5_RS2_PAGE_READ_MODE );
    Delay_ms ( 1000 );

    log_printf( &logger, "***** App init ***** \r\n" );
    log_printf( &logger, "------------------- \r\n" );
    Delay_ms ( 500 );
}

Application Task

Writes "MikroE" to device memory and then reads it and sends it to log.


void application_task ( )
{
    char read_buf[ 6 ];
    uint8_t n_counter;

    flash5_send_cmd( &flash5, FLASH5_CMD_WRITE_ENABLE );
    flash5_page_load_memory( &flash5, 0x000A, &write_buf[ 0 ], 6 );
    flash5_page_read_memory( &flash5, 0x000A, &read_buf[ 0 ], 6 );

    for( n_counter = 0; n_counter < 6; n_counter++ )
    {
        log_printf( &logger, " %c ", &read_buf[ n_counter ] );
        Delay_ms ( 100 );
    }

    log_printf( &logger, " \r\n" );
    log_printf( &logger, "------------------- \r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Flash5

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

LDC Touch Click

0

LDC Touch Click is a compact add-on board optimized for inductive touch applications. This board features the LDC3114-Q1, a four-channel inductance-to-digital converter for low-power proximity and touch-button sensing from Texas Instruments. It comes with an adjustable sensitivity per input channel and operational power mode selection and measures frequency shifts caused by micro-deflection in the conductive targets formed by button presses. These presses are reported through a compatible I2C interface beside four LED indicators for its visual indication. This Click board™ enables touch button design for human-machine interface and precise linear position sensing of metal targets for automotive, consumer, and industrial applications by allowing access to the raw data representing the inductance value.

[Learn More]

H-Bridge 16 Click

0

H-Bridge 16 Click is a compact add-on board with an H-Bridge gate driver, also known as a full-bridge pre-driver. This board features the DRV8262, a dual H-Bridge motor driver from Texas Instruments. The motor driver is designed for a variety of industrial applications and can drive one or two brushed DC motors, one stepper motor, and one or two thermoelectric coolers (TEC). It can operate in a wide supply voltage range of 4.5V to 65V.

[Learn More]

Clock Gen 2 Click

0

Clock Gen 2 Click is an accurate square wave generator that can generate a clock signal in the range from 260kHz to 66.6MHz.

[Learn More]