TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141339 times)
  2. FAT32 Library (74183 times)
  3. Network Ethernet Library (58761 times)
  4. USB Device Library (48850 times)
  5. Network WiFi Library (44560 times)
  6. FT800 Library (44145 times)
  7. GSM click (30881 times)
  8. mikroSDK (29724 times)
  9. PID Library (27368 times)
  10. microSD click (27306 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Fram Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: FRAM

Downloaded: 412 times

Not followed.

License: MIT license  

FRAM Click is a Click board™ that carries a ferroelectric RAM module. Ferroelectric RAM, also known as FRAM, is a non-volatile memory type, with characteristics comparable to much faster DRAM memory modules.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Fram Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Fram Click" changes.

Do you want to report abuse regarding "Fram Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Fram Click

FRAM Click is a Click board™ that carries a ferroelectric RAM module. Ferroelectric RAM, also known as FRAM, is a non-volatile memory type, with characteristics comparable to much faster DRAM memory modules.

fram_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : SPI type

Software Support

We provide a library for the Fram Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Fram Click driver.

Standard key functions :

  • Config Object Initialization function.

    void fram_cfg_setup ( fram_cfg_t *cfg );

  • Initialization function.

    FRAM_RETVAL fram_init ( fram_t ctx, fram_cfg_t cfg );

  • Click Default Configuration function.

    void fram_default_cfg ( fram_t *ctx );

Example key functions :

  • This function that sends write enable command to the chip.

    void fram_write_enable ( fram_t *ctx );

  • This function reads sequential memory locations to buffer.

    void fram_read ( fram_t ctx, uint16_t address, uint8_t buffer, uint16_t count );

  • This function writes to sequential memory locations from buffer.

    void fram_write ( fram_t ctx, uint16_t address, uint8_t buffer, uint16_t count );

Examples Description

This app writing data to Click memory.

The demo application is composed of two sections :

Application Init

Initialization device.


void application_init ( void )
{
    log_cfg_t log_cfg;
    fram_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----\r\n" );

    //  Click initialization.

    fram_cfg_setup( &cfg );
    FRAM_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    fram_init( &fram, &cfg );
    fram_erase_all( &fram );
}

Application Task

Writing data to Click memory and displaying the read data via UART.


void application_task ( void )
{
    char wr_data[ 10 ] = { 'M', 'i', 'k', 'r', 'o', 'E', 13, 10, 0 };
    char rd_data[ 10 ];

    log_printf( &logger, "Writing MikroE to  Fram memory, from address 0x0150: \r\n" );
    fram_write( &fram, 0x0150, &wr_data[ 0 ], 9 );
    log_printf( &logger, "Reading 9 bytes of Fram memory, from address 0x0150: \r\n" );
    fram_read( &fram, 0x0150, &rd_data[ 0 ], 9 );
    log_printf( &logger, "Data read: %c \r\n", rd_data );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Fram

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Thingstream Click

5

Thingstream Click is a gateway Click board which provides a simple and reliable connection to the Thingstream Cloud platform, a cloud-based rapid prototyping environment, hosted by Thingstream AG.

[Learn More]

I2C Isolator 5 Click

0

I2C Isolator 5 Click is a compact add-on board that offers completely isolated bidirectional communication. This board features ISO1644, a hot-swappable bidirectional I2C isolator with enhanced EMC and GPIOs from Texas Instruments. The ISO1644 provides two bidirectional channels, supporting a completely isolated I2C interface that eliminates the need for splitting I2C signals into separate transmit and receive signals for use with standalone optocouplers.

[Learn More]

Magneto 2 Click

0

Magneto 2 Click is a mikroBUS add-on board with Melexis's MLX90316 monolithic rotary position sensor.

[Learn More]