TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141570 times)
  2. FAT32 Library (74513 times)
  3. Network Ethernet Library (59053 times)
  4. USB Device Library (49045 times)
  5. Network WiFi Library (44812 times)
  6. FT800 Library (44376 times)
  7. GSM click (31066 times)
  8. mikroSDK (29923 times)
  9. microSD click (27487 times)
  10. PID Library (27484 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

GeoMagnetic Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.18

mikroSDK Library: 2.0.0.0

Category: Magnetic

Downloaded: 424 times

Not followed.

License: MIT license  

GeoMagnetic Click is a digital magnetometric Click board which can measure the geomagnetic field in three perpendicular axes. The onboard sensor uses FlipCore - a proprietary technology from Bosch, which results with a carefully tuned performance, tailored for demanding 3-axis mobile applications, such as a tilt-compensated electronic compass, gaming controllers, augmented reality applications and similar applications which require reliable and precise 3-axis magnetometric measurement.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "GeoMagnetic Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "GeoMagnetic Click" changes.

Do you want to report abuse regarding "GeoMagnetic Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


GeoMagnetic Click

GeoMagnetic Click is a digital magnetometric Click board which can measure the geomagnetic field in three perpendicular axes. The onboard sensor uses FlipCore - a proprietary technology from Bosch, which results with a carefully tuned performance, tailored for demanding 3-axis mobile applications, such as a tilt-compensated electronic compass, gaming controllers, augmented reality applications and similar applications which require reliable and precise 3-axis magnetometric measurement.

geomagnetic_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : I2C/SPI type

Software Support

We provide a library for the Geomagnetic Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Geomagnetic Click driver.

Standard key functions :

  • Config Object Initialization function.

    void geomagnetic_cfg_setup ( geomagnetic_cfg_t *cfg );

  • Initialization function.

    GEOMAGNETIC_RETVAL geomagnetic_init ( geomagnetic_t ctx, geomagnetic_cfg_t cfg );

  • Click Default Configuration function.

    void geomagnetic_default_cfg ( geomagnetic_t *ctx );

Example key functions :

  • This function sets the x/y/z axis and hall resolution value.

    void geomagnetic_read_axis_data ( geomagnetic_t ctx, int16_t data_x, int16_t data_y, int16_t data_z, uint16_t *resolution_hall );

  • This function gives feedback on whether the device is ready to measure or not.

    uint8_t geomagnetic_check_ready ( geomagnetic_t *ctx );

  • This function configures some Click module registers after the device has been reset.

    geomagnetic_power_on_reset ( geomagnetic_t *ctx );

Examples Description

This example showcases how to initialize and configure the logger and Click modules and measure and display the data later on.

The demo application is composed of two sections :

Application Init

This function initializes and configures the logger and Click modules.


void application_init ( )
{
    log_cfg_t log_cfg;
    geomagnetic_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    geomagnetic_cfg_setup( &cfg );
    GEOMAGNETIC_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    geomagnetic_init( &geomagnetic, &cfg );
    geomagnetic_default_cfg( &geomagnetic );
}

Application Task

This function first checks whether the device is ready to start measuring and after that collects and displays data from all three axes every half a second.


void application_task ( )
{
    GEOMAGNETIC_RETVAL ready_check;
    int16_t axis_x;
    int16_t axis_y;
    int16_t axis_z;
    int16_t resolution_hall;

    ready_check = geomagnetic_check_ready( &geomagnetic );

    while ( ready_check != GEOMAG_DATA_READY )
    {
        ready_check = geomagnetic_check_ready( &geomagnetic );
    }

    geomagnetic_read_axis_data( &geomagnetic, &axis_x, &axis_y, &axis_z, &resolution_hall );

    log_printf( &logger, "X axis: %d\r\n", axis_x );
    log_printf( &logger, "Y axis: %d\r\n", axis_y );
    log_printf( &logger, "Z axis: %d\r\n", axis_z );
    log_printf( &logger, "---------------------------------\r\n" );

    Delay_ms ( 500 );
} 

Note

The Geomagnetic Click needs to initialize the SPI communication module first, because the communication interface selection ( on the Click ) is locked on to SPI and we need to write some data to the registers in order to configure the Click module.

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Geomagnetic

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

DTMF Click

0

DTMF Click is a compact add-on board designed for projects that demand reliable telephony interactions. This board features the CMX865A, a DTMF Codec/FSK Combo multi-standard modem from CML Micro. The CMX865A excels in encoding and decoding DTMF signals, alongside supporting FSK data transmission compatible with V.23, V.21, Bell 103, and Bell 202 standards, making it versatile for various telephony applications. It's particularly adept at enabling dual-mode operations for transmitting and receiving data, ensuring high fidelity in signal processing and resistance to voice falsing. Ideal for security systems, automated response services, and IoT devices requiring telephonic interaction, DTMF Click provides a solution for developers looking to incorporate reliable telecommunication capabilities.

[Learn More]

SRAM 2 click

5

SRAM 2 Click is based on ANV32A62A SRAM memory from Anvo-Systems Dresden. It's a 64Kb serial SRAM with a non-volatile SONOS storage element included with each memory cell, organized as 8k words of 8 bits each. The devices are accessed by a two-wire bus. Up to 4 cascadable devices can share the common bus.

[Learn More]

NDIR CO2 Click

0

NDIR CO2 Click is an advanced integrated CO2 gas sensor system, which is able to measure an absolute CO2 concentration, by utilizing the CDM7160 integrated sensor.

[Learn More]