TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141623 times)
  2. FAT32 Library (74647 times)
  3. Network Ethernet Library (59125 times)
  4. USB Device Library (49163 times)
  5. Network WiFi Library (44925 times)
  6. FT800 Library (44456 times)
  7. GSM click (31119 times)
  8. mikroSDK (30016 times)
  9. microSD click (27531 times)
  10. PID Library (27512 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

UV 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: Optical

Downloaded: 425 times

Not followed.

License: MIT license  

UV 2 Click is a mikroBUS™ add-on board with a VEML6075 UVA and UVB light sensor. VEML6075 is a CMOS chip that incorporates a photodiode, amplifiers,and analog/digital circuits.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "UV 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "UV 2 Click" changes.

Do you want to report abuse regarding "UV 2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


UV 2 Click

UV 2 Click is a mikroBUS™ add-on board with a VEML6075 UVA and UVB light sensor. VEML6075 is a CMOS chip that incorporates a photodiode, amplifiers, and analog/digital circuits.

uv2_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : I2C type

Software Support

We provide a library for the UV2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for UV2 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void uv2_cfg_setup ( uv2_cfg_t *cfg );

  • Initialization function.

    UV2_RETVAL uv2_init ( uv2_t ctx, uv2_cfg_t cfg );

  • Click Default Configuration function.

    void uv2_default_cfg ( uv2_t *ctx );

Example key functions :

  • This function set active force mode by write force mode UV_AF bit to config register of VEML6075 sesnor on UV 2 Click.

    void uv2_set_active_force_mode ( uv2_t *ctx, uint8_t force_mode );

  • This function get UVA data by read UVA register value of VEML6075 sesnor on UV 2 Click.

    uint16_t uv2_get_uva ( uv2_t *ctx );

  • This function get UVB data by read UVB register value of VEML6075 sesnor on UV 2 Click.

    uint16_t uv2_get_uvb ( uv2_t *ctx );

Examples Description

This app measurement UVA and UVB data and calculate UV index level.

The demo application is composed of two sections :

Application Init

Initialization device and set default cinfiguration.


void application_init ( void )
{
    log_cfg_t log_cfg;
    uv2_cfg_t cfg;

    uint8_t state_id;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----\r\n" );

    //  Click initialization.

    uv2_cfg_setup( &cfg );
    UV2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    uv2_init( &uv2, &cfg );

    Delay_ms ( 100 );

    log_printf( &logger, "------------------------\r\n" );
    log_printf( &logger, "       UV 2  Click      \r\n" );
    log_printf( &logger, "------------------------\r\n" );

    uv2_default_cfg( &uv2 );

    state_id = uv2_check_id( &uv2 );

    if ( state_id )
    {
        log_printf( &logger, "       Configured       \r\n" );
    }
    else
    {
        log_printf( &logger, "         ERROR          \r\n" );
    }

    log_printf( &logger, "------------------------\r\n" );
    Delay_ms ( 100 );
}

Application Task

This is a example which demonstrates the use of UV 2 Click board. UV 2 Click communicates with VEML6075 sesnor via I2C by write to register and read from register. This example measurement UVA and UVB data, calculate UV index level and write log. Results are being sent to the Usart Terminal where you can track their changes. All data logs write on usb uart changes for every 2 sec.


void application_task ( void )
{
    uint16_t val_uva;
    uint16_t val_uvb;
    float uv_index;

    val_uva = uv2_get_uva( &uv2 );
    log_printf( &logger, " UVA data = %d \r\n", val_uva );

    val_uvb = uv2_get_uvb( &uv2 );
    log_printf( &logger, " UVB data = %d \r\n", val_uvb );

    uv_index = uv2_get_uv_index( &uv2 );
    log_printf( &logger, " UV Index = %f \r\n", uv_index );

    log_printf( &logger, "------------------------\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.UV2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Brushless 15 Click

0

Brushless 15 Click is a compact add-on board suitable for controlling BLDC motors with any MCU. This board features the TB9061AFNG, an automotive pre-driver that incorporates a sensorless controller for driving a 3-phase full-wave brushless DC motor from Toshiba Semiconductor. The TB9061AFNG achieves 120° rectangular wave motor control by using an input signal line that measures the induced voltage of the motors and three-phase motor output without using Hall sensors, rated for an operating voltage range of 6 to 18V. Motor rotation can be controlled by either the DC or the PWM input signal. Besides, it features several diagnostic circuits and drive-control functions such as motor lock detection, step-out detection, over-current/over-temperature detection, and many more.

[Learn More]

Nano Power Click

0

Nano Power Click is a boost (step-up) DC-DC converter Click with extremely high efficiency and very low input voltage, aimed at the low power IoT market and battery-powered sensors and other devices.

[Learn More]

LR Click

0

LR Click is a compact add-on board that contains a low-power, long-range transceiver. This board features the RN2483, RF technology-based SRD transceiver, which operates at a frequency of 433/868MHz from Microchip Technology. This Click board™ features an embedded LoRaWAN Class A compliant stack, providing a long-range spread spectrum communication with high interference immunity. The RN2483 module is a fully certified 433/868MHz European R&TTE directive assessed radio modem combined with the advanced and straightforward command interface.

[Learn More]