TOP Contributors

  1. MIKROE (2779 codes)
  2. Alcides Ramos (376 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139566 times)
  2. FAT32 Library (72041 times)
  3. Network Ethernet Library (57255 times)
  4. USB Device Library (47615 times)
  5. Network WiFi Library (43219 times)
  6. FT800 Library (42566 times)
  7. GSM click (29930 times)
  8. mikroSDK (28292 times)
  9. PID Library (26933 times)
  10. microSD click (26309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

UV 3 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: Optical

Downloaded: 223 times

Not followed.

License: MIT license  

UV 3 Click is an advanced ultraviolet (UV) light sensor with I2C protocol interface. The Click carries VEML6070 UVA light sensor designed by the CMOS process. UV 3 Click runs on either 3.3V or 5V power supply.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "UV 3 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "UV 3 Click" changes.

Do you want to report abuse regarding "UV 3 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


UV 3 Click

UV 3 Click is an advanced ultraviolet (UV) light sensor with I2C protocol interface. The Click carries VEML6070 UVA light sensor designed by the CMOS process. UV 3 Click runs on either 3.3V or 5V power supply.

uv3_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jan 2020.
  • Type : I2C type

Software Support

We provide a library for the Uv3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Uv3 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void uv3_cfg_setup ( uv3_cfg_t *cfg );

  • Initialization function.

    UV3_RETVAL uv3_init ( uv3_t ctx, uv3_cfg_t cfg );

  • Click Default Configuration function.

    void uv3_default_cfg ( uv3_t *ctx );

Example key functions :

  • Function enable sensor by sets shutdown mode bits as LOW to the target 8-bit CMD slave address.

    void uv3_enable_sensor ( uv3_t *ctx );

  • Function read UV data measurements from to the two target 8-bit slave address.

    uint16_t uv3_read_measurements ( uv3_t *ctx );

  • Function calculate UV risk level of VEML6070 sensor on UV 3 Click.

    uint8_t uv3_risk_level ( uint16_t uv_data );

Examples Description

Converts solar UV light intensity to digital data and measure UV radiation under long time solar UV exposure.

The demo application is composed of two sections :

Application Init

Initialization driver enable's - I2C, enable sensor and start write log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    uv3_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    uv3_cfg_setup( &cfg );
    UV3_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    uv3_init( &uv3, &cfg );
    uv3_default_cfg ( &uv3 );
}

Application Task

This example measures the level of the UV light and logs every 2 seconds to the terminal.


void application_task ( void )
{
    uv_data = uv3_read_measurements( &uv3 );

    risk_lvl = uv3_risk_level( uv_data );

    log_printf( &logger, " UV value  : %d\r\n ", uv_data );

    log_printf( &logger, " Radiation lvl : " );

    if ( risk_lvl == UV3_RAD_LOW )
    {
        log_printf( &logger, " Low\r\n " );
    }

    if ( risk_lvl == UV3_RAD_MODERATE )
    {
        log_printf( &logger, " Moderate\r\n " );
    }

    if ( risk_lvl == UV3_RAD_HIGH )
    {
        log_printf( &logger, " High\r\n " );
    }

    if ( risk_lvl == UV3_RAD_VERY_HIGH )
    {
        log_printf( &logger, " Very High\r\n " );
    }

    if ( risk_lvl == UV3_RAD_EXTREME )
    {
        log_printf( &logger, " Extreme\r\n " );
    }

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Uv3

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Stepper 8 Click

0

Stepper 8 Click is a motor control add on board based on TC78H670FTG from Toshiba, a clock-in and serial controlled Bipolar Stepping Motor Driver which can drive a 128 micro-stepping motor with a power supply ranging from 2.5V to 16V for wide range of applications includes USB-powered, battery-powered, and standard 9-12V system devices. A perfect solution for driving stepper motors in security cameras, portable printers, handheld scanners, pico-projectors, smartphones and many more.

[Learn More]

LR Click

0

LR Click is a compact add-on board that contains a low-power, long-range transceiver. This board features the RN2483, RF technology-based SRD transceiver, which operates at a frequency of 433/868MHz from Microchip Technology. This Click board™ features an embedded LoRaWAN Class A compliant stack, providing a long-range spread spectrum communication with high interference immunity. The RN2483 module is a fully certified 433/868MHz European R&TTE directive assessed radio modem combined with the advanced and straightforward command interface.

[Learn More]

UT-S 7-SEG R Click

0

7-segment LED display is the most commonly used type of display to represent changing numerical values. The principle is very simple - seven LED segments are positioned in a certain shape and by turning specific segments on or off, the shape that resembles a specific number is lit. This method of displaying numbers was first used in the beginning of the 20th century, but after the invention of the LED in ‘70, it is the most commonly used method to display numbers. It utilizes a fairly simple and cheap design with the numbers clearly visible.

[Learn More]