TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (385 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139842 times)
  2. FAT32 Library (72209 times)
  3. Network Ethernet Library (57392 times)
  4. USB Device Library (47739 times)
  5. Network WiFi Library (43364 times)
  6. FT800 Library (42700 times)
  7. GSM click (29980 times)
  8. mikroSDK (28440 times)
  9. PID Library (26989 times)
  10. microSD click (26398 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

LR IoT Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.11

mikroSDK Library: 2.0.0.0

Category: LoRa

Downloaded: 154 times

Not followed.

License: MIT license  

LR IoT Click is a compact add-on board that contains a long-range LoRa transceiver. This board features Semtech Corporation’s LR1110, an ultra-low power platform integrating a LoRa® transceiver, multi-constellation GNSS, and passive WiFi AP MAC address scanner. Alongside its sub-GHz capabilities, the LR1110 also has a multi-band front-end capable of receiving 802.11b/g/n WiFi Access Point MAC addresses and GNSS (GPS, BeiDou, geostationary) satellite raw data befitting geo-positioning purposes. The acquired information is then transmitted using an LPWAN network to a geolocation server, which analyzes it and correlates the position with data from a geolocation database, enabling a unique balance between low power and performance.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "LR IoT Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "LR IoT Click" changes.

Do you want to report abuse regarding "LR IoT Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


LR IoT Click

LR IoT Click is a compact add-on board that contains a long-range LoRa transceiver. This board features Semtech Corporation’s LR1110, an ultra-low power platform integrating a LoRa® transceiver, multi-constellation GNSS, and passive WiFi AP MAC address scanner. Alongside its sub-GHz capabilities, the LR1110 also has a multi-band front-end capable of receiving 802.11b/g/n WiFi Access Point MAC addresses and GNSS (GPS, BeiDou, geostationary) satellite raw data befitting geo-positioning purposes. The acquired information is then transmitted using an LPWAN network to a geolocation server, which analyzes it and correlates the position with data from a geolocation database, enabling a unique balance between low power and performance.

lriot_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Sep 2022.
  • Type : SPI type

Software Support

We provide a library for the LR IoT Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for LR IoT Click driver.

Standard key functions :

  • lriot_cfg_setup Config Object Initialization function.

    void lriot_cfg_setup ( lriot_cfg_t *cfg );
  • lriot_init Initialization function.

    err_t lriot_init ( lriot_t *ctx, lriot_cfg_t *cfg );
  • lriot_default_cfg Click Default Configuration function.

    err_t lriot_default_cfg ( lriot_t *ctx );

Example key functions :

  • lriot_get_wifi_scan_results This function performs a WiFi scanning and reads the results.

    err_t lriot_get_wifi_scan_results ( lriot_t *ctx, lriot_wifi_scan_results_t *results );
  • lriot_get_gnss_scan_results This function performs a GNSS scanning and reads the results.

    err_t lriot_get_gnss_scan_results ( lriot_t *ctx, lriot_gnss_scan_results_t *results );
  • lriot_send_lora_message This function sends a LoRa message to the receiver.

    err_t lriot_send_lora_message ( lriot_t *ctx, uint8_t *message );

Example Description

This example demonstrates the use of LR IoT Click board by reading a GNSS and WiFi scanning results and displaying it on the USB UART. In the case of a tranceive firmware the communication between two devices over LoRa will be demonstrated as well.

The demo application is composed of two sections :

Application Init

Initializes the driver, performs the Click default configuration, and after that reads and displays the chip's firmware information. In the case you need to update or change the default firmware refer to the @b LRIOT_UPDATE_FIRMWARE and @b LRIOT_FIRMWARE_SELECTOR macro definition.


void application_init ( void )
{
    log_cfg_t log_cfg;      /**< Logger config object. */
    lriot_cfg_t lriot_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    lriot_cfg_setup( &lriot_cfg );
    LRIOT_MAP_MIKROBUS( lriot_cfg, MIKROBUS_1 );

    if ( SPI_MASTER_ERROR == lriot_init( &lriot, &lriot_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( LRIOT_ERROR == lriot_default_cfg ( &lriot ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    lriot_chip_info_t chip_info;
    if ( LRIOT_OK == lriot_get_chip_info ( &lriot, &chip_info ) ) 
    {
        lriot_display_chip_info ( chip_info );
    }

    log_info( &logger, " Application Task " );
}

Application Task

There are 3 types of the example:

  1. Modem firmware: reads a GNSS and WiFi scanning results and displays them on the USB UART.
  2. Transcever firmware (application mode transmitter ): reads a GNSS and WiFi scanning results as well as the chip internal temperature and sends specific LoRa messages containing that information to the LoRa receiver.
  3. Transcever firmware (application mode receiver): reads all incoming LoRa packets and displays them on the USB UART.

void application_task ( void )
{
#if ( LRIOT_FIRMWARE_SELECTOR == LRIOT_TRANSCEIVE_FIRMWARE )
    uint8_t lora_buffer[ LRIOT_LORA_PKT_PAYLOAD_LEN ] = { 0 };
    #ifdef DEMO_APP_TRANSMITTER
        lriot_gnss_scan_results_t gnss_results = { 0 };
        lriot_wifi_scan_results_t wifi_results = { 0 };
        uint8_t tmp_buf[ 30 ] = { 0 };
        float temperature = 0;

        if ( LRIOT_OK == lriot_get_gnss_scan_results ( &lriot, &gnss_results ) )
        {
            lriot_display_gnss_scan_results ( gnss_results );
        }

        memset( lora_buffer, 0, sizeof ( lora_buffer ) );
        strcpy( lora_buffer, "Number of sattelites found is " );
        uint16_to_str ( gnss_results.num_satellites, tmp_buf );
        l_trim ( tmp_buf );
        strcat( lora_buffer, tmp_buf );
        if ( LRIOT_OK == lriot_send_lora_message ( &lriot, lora_buffer ) )
        {
            log_printf( &logger, "Send LoRa message - done\r\n" );
        }

        if ( LRIOT_OK == lriot_get_wifi_scan_results ( &lriot, &wifi_results ) )
        {
            lriot_display_wifi_scan_results ( wifi_results );
        }
        memset( lora_buffer, 0, sizeof ( lora_buffer ) );
        strcpy( lora_buffer, "Number of WiFi scan results is " );
        uint16_to_str ( wifi_results.num_wifi_results, tmp_buf );
        l_trim ( tmp_buf );
        strcat( lora_buffer, tmp_buf );
        if ( LRIOT_OK == lriot_send_lora_message ( &lriot, lora_buffer ) )
        {
            log_printf( &logger, "Send LoRa message - done\r\n" );
        }

        log_printf ( &logger, "**************************************************************\r\n" );
        if ( LRIOT_OK == lriot_get_temperature ( &lriot, &temperature ) )
        {
            log_printf ( &logger, "Temperature : %.2f degC\r\n", temperature );
        }
        memset( lora_buffer, 0, sizeof ( lora_buffer ) );
        strcpy( lora_buffer, "My temperature is " );
        float_to_str ( temperature, tmp_buf );
        l_trim ( tmp_buf );
        tmp_buf[ 5 ] = 0;
        strcat( lora_buffer, tmp_buf );
        strcat( lora_buffer, " degC" );
        if ( LRIOT_OK == lriot_send_lora_message ( &lriot, lora_buffer ) )
        {
            log_printf( &logger, "Send LoRa message - done\r\n" );
        }
    #else
        lriot_lora_packet_status_t pkt_status;
        if ( LRIOT_OK == lriot_read_lora_message ( &lriot, &pkt_status, lora_buffer ) )
        {
            log_printf ( &logger, "**************************************************************\r\n" );
            log_printf ( &logger, "*                      RECEIVED LORA PACKET                  *\r\n" );
            log_printf ( &logger, "**************************************************************\r\n" );
            log_printf ( &logger, " RSSI        : %d dBm\r\n", ( uint16_t ) pkt_status.rssi_pkt_in_dbm );
            log_printf ( &logger, " Signal RSSI : %d dBm\r\n", ( uint16_t ) pkt_status.signal_rssi_pkt_in_dbm );
            log_printf ( &logger, " SNR         : %d dB\r\n", ( uint16_t ) pkt_status.snr_pkt_in_db );
            log_printf ( &logger, " Message     : \"%s\"\r\n\n", lora_buffer );
        }
    #endif
#else
    lriot_gnss_scan_results_t gnss_results = { 0 };
    lriot_wifi_scan_results_t wifi_results = { 0 };

    if ( LRIOT_OK == lriot_get_gnss_scan_results ( &lriot, &gnss_results ) )
    {
        lriot_display_gnss_scan_results ( gnss_results );
    }

    if ( LRIOT_OK == lriot_get_wifi_scan_results ( &lriot, &wifi_results ) )
    {
        lriot_display_wifi_scan_results ( wifi_results );
    }
#endif
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.LRIoT

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Microwave 2 click

5

Microwave 2 click is an accurate and reliable short to medium range motion detection Click board, based on a Doppler radar principle.

[Learn More]

RTC 9 click

5

RTC 9 Click is a real-time clock module which has an extremely low power consumption, allowing it to be used with a single button cell battery, for an extended period of time. This board features the M41T82, real-time clock (RTC) with battery switchover, from ST Microelectronics.

[Learn More]

Thermo 19 click

5

Thermo 19 Click is a compact add-on board that provides an accurate temperature measurement. This board features the MAX31825, a temperature sensor that provides 8-bit to 12-bit Celsius temperature measurements with better than ±1.75°C from -45°C to +145°C.

[Learn More]