TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (404 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141101 times)
  2. FAT32 Library (73898 times)
  3. Network Ethernet Library (58546 times)
  4. USB Device Library (48723 times)
  5. Network WiFi Library (44371 times)
  6. FT800 Library (43971 times)
  7. GSM click (30717 times)
  8. mikroSDK (29471 times)
  9. PID Library (27283 times)
  10. microSD click (27092 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Gyro 4 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.18

mikroSDK Library: 2.0.0.0

Category: Motion

Downloaded: 355 times

Not followed.

License: MIT license  

Gyro 4 Click is a two-axis MEMS gyroscope for optical image stabilization applications.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Gyro 4 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Gyro 4 Click" changes.

Do you want to report abuse regarding "Gyro 4 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Gyro 4 Click

Gyro 4 Click is a two-axis MEMS gyroscope for optical image stabilization applications.

gyro4_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : SPI type

Software Support

We provide a library for the Gyro4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Gyro4 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void gyro4_cfg_setup ( gyro4_cfg_t *cfg );

  • Initialization function.

    GYRO4_RETVAL gyro4_init ( gyro4_t ctx, gyro4_cfg_t cfg );

  • Click Default Configuration function.

    void gyro4_default_cfg ( gyro4_t *ctx );

Example key functions :

  • Getting register content

    uint8_t gyro4_spi_get ( gyro4_t ctx, uint8_t register_address, uint8_t register_buffer, uint16_t n_registers );

  • Getting die temperature value

    uint8_t gyro4_get_temperature ( gyro4_t ctx, float temperature );

  • Getting axes values

    uint8_t gyro4_get_axes( gyro4_t ctx, float x_axis, float * y_axis );

Examples Description

This application is a two-axis MEMS gyroscope for optical image stabilization.

The demo application is composed of two sections :

Application Init

Initializes SPI device


void application_init ( void )
{
    log_cfg_t log_cfg;
    gyro4_cfg_t cfg;
    uint8_t initialize_flag;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    gyro4_cfg_setup( &cfg );
    GYRO4_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    gyro4_init( &gyro4, &cfg );

    Delay_ms ( 500 );
    initialize_flag = gyro4_initialize( &gyro4 );
    if ( initialize_flag == 1 )
    {
        log_printf( &logger, "> App init fail \r\n" );
    }
    else if ( initialize_flag == 0 )
    {
        log_printf( &logger, "> App init done \r\n" );
    }
}

Application Task

Checks for data ready interrupt, gets axes and temperature data and logs those values


void application_task ( )
{
    uint8_t int_flag;
    float x_axis;
    float y_axis;
    float die_temperature;
    char degrees_celsius[ 4 ] = { ' ', 176, 'C', 0x00 };
    char degrees_per_second[ 5 ] = { ' ', 176, '/', 's', 0x00 };

    int_flag = gyro4_int_get( &gyro4 );
    while ( int_flag == 1 )
    {
        int_flag = gyro4_int_get( &gyro4 );
    }

    gyro4_get_temperature( &gyro4, &die_temperature );
    gyro4_get_axes( &gyro4, &x_axis, &y_axis );

    log_printf( &logger, "\r\n" );
    log_printf( &logger, "> Die temperature : %.2f %c \r\n", die_temperature, degrees_celsius );
    log_printf( &logger, "> X axis : %.2f %c \r\n", x_axis, degrees_per_second );
    log_printf( &logger, "> Y axis : %.2f %c \r\n", y_axis, degrees_per_second );

    Delay_ms ( 500 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Gyro4

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Single Wire CAN Click

0

Single Wire CAN Click is a compact add-on board that contains an IC for a single wire data link capable of operating with various protocols such as the Controller Area Network (CAN). This board features the NCV7356D1R2G, Single Wire CAN transceiver from ON Semiconductor, which operates from a supply voltage from 5V to 27V with bus speed up to 40 kbps.

[Learn More]

Hz to V Click

0

HZ to V Click is a device that can converts input frequency of the signal with virtually any wave shape to a DC voltage output, with a level proportional to the input frequency. It has a linear response, and by applying a signal with the frequency between 1kHz to 10kHz on its input, the Click board™ will generate a DC voltage, ranging from 0.33V to 3.3V.

[Learn More]

Port Demo

0

The application demonstrates Port SDK functionality.

[Learn More]