We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.18
mikroSDK Library: 2.0.0.0
Category: Motion
Downloaded: 196 times
Not followed.
License: MIT license
Gyro 4 Click is a two-axis MEMS gyroscope for optical image stabilization applications.
Do you want to subscribe in order to receive notifications regarding "Gyro 4 Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "Gyro 4 Click" changes.
Do you want to report abuse regarding "Gyro 4 Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
3549_gyro_4_click.zip [345.39KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
Gyro 4 Click is a two-axis MEMS gyroscope for optical image stabilization applications.
We provide a library for the Gyro4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.
This library contains API for Gyro4 Click driver.
Config Object Initialization function.
void gyro4_cfg_setup ( gyro4_cfg_t *cfg );
Initialization function.
GYRO4_RETVAL gyro4_init ( gyro4_t ctx, gyro4_cfg_t cfg );
Click Default Configuration function.
void gyro4_default_cfg ( gyro4_t *ctx );
Getting register content
uint8_t gyro4_spi_get ( gyro4_t ctx, uint8_t register_address, uint8_t register_buffer, uint16_t n_registers );
Getting die temperature value
uint8_t gyro4_get_temperature ( gyro4_t ctx, float temperature );
Getting axes values
uint8_t gyro4_get_axes( gyro4_t ctx, float x_axis, float * y_axis );
This application is a two-axis MEMS gyroscope for optical image stabilization.
The demo application is composed of two sections :
Initializes SPI device
void application_init ( void )
{
log_cfg_t log_cfg;
gyro4_cfg_t cfg;
uint8_t initialize_flag;
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, "---- Application Init ----" );
// Click initialization.
gyro4_cfg_setup( &cfg );
GYRO4_MAP_MIKROBUS( cfg, MIKROBUS_1 );
gyro4_init( &gyro4, &cfg );
Delay_ms ( 500 );
initialize_flag = gyro4_initialize( &gyro4 );
if ( initialize_flag == 1 )
{
log_printf( &logger, "> App init fail \r\n" );
}
else if ( initialize_flag == 0 )
{
log_printf( &logger, "> App init done \r\n" );
}
}
Checks for data ready interrupt, gets axes and temperature data and logs those values
void application_task ( )
{
uint8_t int_flag;
float x_axis;
float y_axis;
float die_temperature;
char degrees_celsius[ 4 ] = { ' ', 176, 'C', 0x00 };
char degrees_per_second[ 5 ] = { ' ', 176, '/', 's', 0x00 };
int_flag = gyro4_int_get( &gyro4 );
while ( int_flag == 1 )
{
int_flag = gyro4_int_get( &gyro4 );
}
gyro4_get_temperature( &gyro4, &die_temperature );
gyro4_get_axes( &gyro4, &x_axis, &y_axis );
log_printf( &logger, "\r\n" );
log_printf( &logger, "> Die temperature : %.2f %c \r\n", die_temperature, degrees_celsius );
log_printf( &logger, "> X axis : %.2f %c \r\n", x_axis, degrees_per_second );
log_printf( &logger, "> Y axis : %.2f %c \r\n", y_axis, degrees_per_second );
Delay_ms ( 500 );
}
The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.
Other mikroE Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.