TOP Contributors

  1. MIKROE (2779 codes)
  2. Alcides Ramos (376 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139559 times)
  2. FAT32 Library (72041 times)
  3. Network Ethernet Library (57254 times)
  4. USB Device Library (47607 times)
  5. Network WiFi Library (43219 times)
  6. FT800 Library (42551 times)
  7. GSM click (29930 times)
  8. mikroSDK (28292 times)
  9. PID Library (26930 times)
  10. microSD click (26309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

LED Flash Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: LED segment

Downloaded: 202 times

Not followed.

License: MIT license  

LED Flash Click functions as a high power LED flash, and carries the CAT3224 flash LED driver.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "LED Flash Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "LED Flash Click" changes.

Do you want to report abuse regarding "LED Flash Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


LED Flash Click

LED Flash Click functions as a high power LED flash, and carries the CAT3224 flash LED driver. The Click is designed to run on a 5V power supply.

ledflash_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : GPIO type

Software Support

We provide a library for the LedFlash Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for LedFlash Click driver.

Standard key functions :

  • Config Object Initialization function.

    void ledflash_cfg_setup ( ledflash_cfg_t *cfg );

  • Initialization function.

    LEDFLASH_RETVAL ledflash_init ( ledflash_t ctx, ledflash_cfg_t cfg );

Example key functions :

  • Charge Supercapacitor Enable function

    void ledflash_char_supcap_enable ( ledflash_t *ctx );

  • Flash Enable function

    void ledflash_flash_enable ( ledflash_t *ctx );

  • Check Flash Ready Flag function

    uint8_t ledflash_flash_rdy_flag ( ledflash_t *ctx );

Examples Description

This application switching on and off led flash.

The demo application is composed of two sections :

Application Init

Initialization driver enables GPIO, starts write log and issues a warning.


void application_init ( void )
{
    log_cfg_t log_cfg;
    ledflash_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    ledflash_cfg_setup( &cfg );
    LEDFLASH_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    ledflash_init( &ledflash, &cfg );
    Delay_ms ( 100 );

    log_printf( &logger, "----------------------------------\r\n" );
    log_printf( &logger, " LED Flash Click \r\n" );
    log_printf( &logger, "----------------------------------\r\n" );
    log_printf( &logger, "/////////////////\r\n" );
    log_printf( &logger, " WARNING!!! \r\n" );
    log_printf( &logger, " DO NOT LOOK \r\n" );
    log_printf( &logger, " INTO THE LEDS, \r\n" );
    log_printf( &logger, " WHILE THAY ARE ON!!! \r\n" );
    log_printf( &logger, "/////////////////\r\n" );
    Delay_ms ( 1000 );
}

Application Task

This example demonstrates the use of LED Flash Click board by flashing with LEDs when ever supercapacitor is at a full voltage.


void application_task (  )
{
    uint8_t state;

    log_printf( &logger, " Charge Supercapacitor Enable \r\n" );
    ledflash_char_supcap_enable( &ledflash );
    Delay_ms ( 1000 );
    state = ledflash_flash_rdy_flag( &ledflash );

    if ( state == 0 )
    {
        log_printf( &logger, " Flash ON! \r\n" );
        ledflash_flash_enable( &ledflash );
    }
    else
    {
        log_printf( &logger, " Flash OFF! \r\n" );
        ledflash_flash_disable( &ledflash );
    }
    log_printf( &logger, "----------------------------------\r\n" );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.LedFlash

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

UART 1-Wire click

5

UART 1-Wire click is used to convert standard UART or 5V RS232 signals into 1-Wire signals.

[Learn More]

FT812 Library

25

FTDI FT81x graphic controller library.

[Learn More]

CO2 3 Click

0

CO2 3 Click is a compact add-on board that allows for precise and reliable indoor air quality measurements. This board features XENSIV™ PASCO2V01BUMA1, a highly accurate CO2 sensor module from Infineon Technologies that uses photoacoustic spectroscopy technology to measure indoor air quality. The module comprises a gas measuring cell, an IR emitter, a microphone, and a microcontroller for data processing. Its key components are developed in-house, ensuring the highest quality and performance. Other major characteristics include high accuracy, low power consumption, and versatile configuration options.

[Learn More]