TOP Contributors

  1. MIKROE (2752 codes)
  2. Alcides Ramos (372 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139068 times)
  2. FAT32 Library (71594 times)
  3. Network Ethernet Library (56989 times)
  4. USB Device Library (47330 times)
  5. Network WiFi Library (43006 times)
  6. FT800 Library (42297 times)
  7. GSM click (29777 times)
  8. mikroSDK (27874 times)
  9. PID Library (26858 times)
  10. microSD click (26129 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Led Flash 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: LED segment

Downloaded: 284 times

Not followed.

License: MIT license  

LED Flash 2 Click is a powerful flash/torch Click, featuring the MIC2870 from Microchip, a high-efficiency flash LED driver, optimized for driving one or two high-brightness camera flash LEDs.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Led Flash 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Led Flash 2 Click" changes.

Do you want to report abuse regarding "Led Flash 2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Led Flash 2 Click

LED Flash 2 Click is a powerful flash/torch Click, featuring the MIC2870 from Microchip, a high-efficiency flash LED driver, optimized for driving one or two high-brightness camera flash LEDs.

ledflash2_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : I2C type

Software Support

We provide a library for the LedFlash2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for LedFlash2 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void ledflash2_cfg_setup ( ledflash2_cfg_t *cfg );

  • Initialization function.

    LEDFLASH2_RETVAL ledflash2_init ( ledflash2_t ctx, ledflash2_cfg_t cfg );

  • Click Default Configuration function.

    void ledflash2_default_cfg ( ledflash2_t *ctx );

Example key functions :

  • This function reads raw data from any register.

    uint8_t ledflash2_read_register ( ledflash2_t *ctx, uint8_t reg_address );

  • This function writes data into any register.

    void ledflash2_write_register ( ledflash2_t *ctx, uint8_t reg_address, uint8_t reg_data );

  • This function will set the flash inhibit pin to either 1 or 0. It should be

  • used when Click is in flash mode, to reduce the flash intensity.

    void ledflash2_toggle_flash_inhibit ( ledflash2_t *ctx, uint8_t pin_state );

Examples Description

This app demonstrate flash and torch mode on LED light.

The demo application is composed of two sections :

Application Init

Initializes device and sets the Click into "OFF" mode.


void application_init ( void )
{
    log_cfg_t log_cfg;
    ledflash2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    ledflash2_cfg_setup( &cfg );
    LEDFLASH2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    ledflash2_init( &ledflash2, &cfg );

    ledflash2_set_mode( &ledflash2, LEDFLASH2_MODE_OFF, 0, 0 );
    log_printf( &logger, "Initialized...\r\n" );
}

Application Task

This function will demonstrate how to use the flash mode, and the torch mode, with different power settings. It will then turn the Click off.


void application_task ( void )
{
    Delay_ms ( 1000 );
    log_printf( &logger, "Do not look directly into the led lights.\r\n" );
    log_printf( &logger, "Triggering flash in 5...\r\n" );
    Delay_ms ( 1000 );
    log_printf( &logger, "4...\r\n" );
    Delay_ms ( 1000 );
    log_printf( &logger, "3...\r\n" );
    Delay_ms ( 1000 );
    log_printf( &logger, "2...\r\n" );
    Delay_ms ( 1000 );
    log_printf( &logger, "1...\r\n" );
    Delay_ms ( 1000 );
    log_printf( &logger, "Cheese!\r\n" );

    ledflash2_set_mode( &ledflash2, LEDFLASH2_MODE_FLASH, LEDFLASH2_CUR_50, LEDFLASH2_FTMR_312 );
    Delay_ms ( 350 );
    ledflash2_set_mode( &ledflash2, LEDFLASH2_MODE_OFF, 0, 0 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, "Switching to the torch mode in a moment...\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    ledflash2_set_mode( &ledflash2, LEDFLASH2_MODE_TORCH, LEDFLASH2_CUR_100, 0 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    log_printf( &logger, "Dimming the torch light...\r\n" );

    for ( uint8_t cnt = LEDFLASH2_CUR_100; cnt <= LEDFLASH2_CUR_18; cnt++ )
    {
        ledflash2_set_mode( &ledflash2, LEDFLASH2_MODE_TORCH, cnt, 0 );
        Delay_ms ( 500 );
    }
    Delay_ms ( 1000 );
    log_printf( &logger, "Switching off...\r\n" );
    ledflash2_set_mode( &ledflash2, LEDFLASH2_MODE_OFF, 0, 0 );
    log_printf( &logger, "------------------------------------------------\r\n" );
}

Note

LED lights can be very bright, even on lowest power settings. Avoid looking directly into the light when Click is in operation.

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.LedFlash2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

ADC 21 Click

0

ADC 21 Click is a compact add-on board that converts an analog voltage into a digital representation. This board features the ADC1283, a low-power, eight-channel pure CMOS 12-bit analog-to-digital converter from STMicroelectronics. The ADC1283 is specified for conversion from 50ksps to 200ksps. Its architecture is based on a successive approximation register with an internal track-and-hold cell. It features eight single-ended multiplexed inputs, where the output serial data is straight binary and SPI-compatible.

[Learn More]

ANNA-B412 Click

0

ANNA-B412 Click is a compact add-on board that provides BT/BLE connectivity for any embedded application. This board features the ANNA-B412, a standalone Bluetooth 5.1 low-energy module from u-blox. It is a System-in-Package (SiP) design with pre-flashed u-connectXpress software, which supports Bluetooth LE Serial port service, GATT client and server, Bluetooth beacons, Bluetooth long-range, NFC, and simultaneous peripheral and central roles. The Bluetooth module in LE mode can achieve up to 2Mbps data rates.

[Learn More]

LP WiFi Click

0

LP WiFi Click is a compact add-on board that represents an ultra-low-power Wi-Fi solution. This board features the DA16200, a fully integrated Wi-Fi module with ultra-low power consumption, best RF performance, and a comfortable development environment from Dialog Semiconductor.

[Learn More]