TOP Contributors

  1. MIKROE (2657 codes)
  2. Alcides Ramos (355 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136904 times)
  2. FAT32 Library (70035 times)
  3. Network Ethernet Library (56005 times)
  4. USB Device Library (46308 times)
  5. Network WiFi Library (41934 times)
  6. FT800 Library (41236 times)
  7. GSM click (29024 times)
  8. PID Library (26434 times)
  9. mikroSDK (26402 times)
  10. microSD click (25387 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Magneto 2 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: Magnetic

Downloaded: 93 times

Not followed.

License: MIT license  

Magneto 2 click is a mikroBUS add-on board with Melexis's MLX90316 monolithic rotary position sensor.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Magneto 2 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Magneto 2 click" changes.

Do you want to report abuse regarding "Magneto 2 click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Magneto 2 click

Magneto 2 click is a mikroBUS add-on board with Melexis's MLX90316 monolithic rotary position sensor.

magneto2_click.png

click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : SPI type

Software Support

We provide a library for the Magneto2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Magneto2 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void magneto2_cfg_setup ( magneto2_cfg_t *cfg );

  • Initialization function.

    MAGNETO2_RETVAL magneto2_init ( magneto2_t ctx, magneto2_cfg_t cfg );

Example key functions :

  • This function reads 14-bit data value from target register, calculates and converts to float angle value from 0� to 360�.

    float magneto2_read_angle ( magneto2_t* ctx )

  • This function takes 14-bit data value from target register.

    uint16_t magneto2_read_data ( magneto2_t* ctx );

Examples Description

This example collects data from the sensor, calculates position of absolute rotary angle and then logs it.

The demo application is composed of two sections :

Application Init

Initializes driver and start write log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    magneto2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    magneto2_cfg_setup( &cfg );
    MAGNETO2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    magneto2_init( &magneto2, &cfg );

    angle_value = 0;
    angle_value_old = -1.0;
}

Application Task

Magneto 2 Click communicates with register via SPI by read from register and calculates position of absolute rotary angle float value. Results are being sent to the Uart Terminal where you can track their changes. All data logs on usb uart when magnetic field is detected.


void application_task ( void )
{
    angle_value = magneto2_read_angle( &magneto2 );
    Delay_100ms();

    if ( angle_value_old != angle_value )
    {
        if ( angle_value != -1 )
        {
            if ( angle_value != 0 )
            {
                log_printf( &logger, "Angle %f\r\n", angle_value );
            }
            else
            {
                log_printf( &logger, "Magnetic field too weak\r\n" );
            }
        }
        else
        {
            log_printf(&logger, "Magnetic field too strong\r\n");
        }

        angle_value_old = angle_value;
        Delay_ms ( 1000 );
    }
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Magneto2

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Buck 23 click

0

Buck 23 Click is a compact add-on board with a DC-DC power converter that steps down the voltage from its input to its output. This board features the MAX20010C, a fully-integrated, high-efficiency, synchronous, step-down converter from Analog Devices. The MAX20010C achieves 6A continuous output current over a wide input supply range from 3V to 5.5V. It offers ±2% output voltage accuracy and can operate efficiently over interface-configurable output voltage load range from 0.5V to 1.58V. The MAX20010C also offers programmable soft-start, overcurrent, and overtemperature protections.

[Learn More]

MCP16331 INV click

5

MCP16331 INV click works as a buck-boost voltage regulator, a type of switching mode power supply topology that combines the principles of the buck conversion (step-down) and the boost conversion (step-up) integrated on a single device.

[Learn More]

Charger 6 click

0

Charger 6 Click is a compact add-on board that represents a single-cell battery charger. This board features the BQ25601, an I2C controlled battery charger for high input voltage and narrow voltage DC power path management from Texas Instruments. This buck charger supports USB, and it’s optimized for USB voltage input. The low impedance power path optimizes switch-mode operation efficiency, reduces battery charging time, and extends battery life during discharge. It also has a programmable current limiting, allowing it to use an external power supply rated up to 13.5V. This Click board™ is suitable as a Li-Ion and Li-polymer battery charger for portable devices and accessories, power tools, and more.

[Learn More]