TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (387 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (120 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140172 times)
  2. FAT32 Library (72626 times)
  3. Network Ethernet Library (57645 times)
  4. USB Device Library (47958 times)
  5. Network WiFi Library (43556 times)
  6. FT800 Library (42944 times)
  7. GSM click (30141 times)
  8. mikroSDK (28672 times)
  9. PID Library (27058 times)
  10. microSD click (26553 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Manometer 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.20

mikroSDK Library: 2.0.0.0

Category: Pressure

Downloaded: 286 times

Not followed.

License: MIT license  

Manometer 2 Click carries the MS5525DSO-SB001GS digital pressure sensor, based on leading MEMS technology.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Manometer 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Manometer 2 Click" changes.

Do you want to report abuse regarding "Manometer 2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Manometer 2 Click

Manometer 2 Click carries the MS5525DSO-SB001GS digital pressure sensor, based on leading MEMS technology.

manometer2_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : I2C/SPI type

Software Support

We provide a library for the Manometer2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Manometer2 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void manometer2_cfg_setup ( manometer2_cfg_t *cfg );

  • Initialization function.

    MANOMETER2_RETVAL manometer2_init ( manometer2_t ctx, manometer2_cfg_t cfg );

Example key functions :

  • Generic read data function uint32_t manometer2_read_command ( manometer2_t *ctx, uint8_t reg_address );

  • Function read coeffitient

    void manometer2_read_coef ( manometer2_t *ctx );

  • Get pressure data function float manometer2_get_pressure ( manometer2_t *ctx, uint8_t oversampling_ratio );

Examples Description

This application is digital pressure sensor.

The demo application is composed of two sections :

Application Init

Initialization driver enable's - I2C, initialization Manometer 2 sensor MS5525DSO-SB001GS by read coeffitient value and start write log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    manometer2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    manometer2_cfg_setup( &cfg );
    MANOMETER2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    manometer2_init( &manometer2, &cfg );

    manometer2_read_coef( &manometer2 );
    log_printf( &logger, "        Initialization \r\n" );
    log_printf( &logger, "----------------------------- \r\n" );
    Delay_100ms( );
}

Application Task

This is a example which demonstrates the use of Manometer 2 Click board. Measured pressure and temperature value from sensor, calculate pressure [ PSI ] and temperature [ �C ], results are being sent to the Usart Terminal where you can track their changes. All data logs on usb uart for aproximetly every 3 sec when the data value changes.


void application_task (  )
{
    float temperature;
    float pressure;

    temperature = manometer2_get_temperature( &manometer2, MANOMETER2_CONVERT_4096 );
    Delay_10ms( );

    pressure = manometer2_get_pressure( &manometer2, MANOMETER2_CONVERT_4096 );
    Delay_10ms( );

    log_printf( &logger, " Pressure :  %.2f PSI \r\n", pressure );
    log_printf( &logger, " Temperature: %.2f C \r\n", temperature );
    log_printf( &logger, "----------------------------- \r\n" );

    Delay_1sec( );
    Delay_1sec( );
    Delay_1sec( );
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Manometer2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

LTE IoT Click

0

LTE IoT Click is a Click board™ that allows connection to the LTE and 2G networks

[Learn More]

Air Quality 11 Click

0

Air Quality 11 Click is a compact add-on board for monitoring and analyzing indoor air quality. This board features the ENS161, a multi-gas sensor from ScioSense based on metal oxide (MOX) technology, to detect a range of volatile organic compounds with high sensitivity. The board supports I2C and SPI communication protocols, allowing flexible integration with various MCU platforms. It can calculate equivalent CO2 and TVOC levels and provide standardized air quality indices directly on-chip.

[Learn More]

Step Down 8 Click

0

Step Down 8 Click is a compact add-on board that converts higher voltages into a lower voltage level. This board features the MAX25232, a mini buck converter from Analog Devices. It is designed to deliver up to 3A with 3.5V to 36V input voltages while using only 3.5μA quiescent current at no load.

[Learn More]