TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (402 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (129 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140763 times)
  2. FAT32 Library (73350 times)
  3. Network Ethernet Library (58196 times)
  4. USB Device Library (48380 times)
  5. Network WiFi Library (43975 times)
  6. FT800 Library (43535 times)
  7. GSM click (30466 times)
  8. mikroSDK (29170 times)
  9. PID Library (27166 times)
  10. microSD click (26847 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Manometer 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.20

mikroSDK Library: 2.0.0.0

Category: Pressure

Downloaded: 309 times

Not followed.

License: MIT license  

Manometer 2 Click carries the MS5525DSO-SB001GS digital pressure sensor, based on leading MEMS technology.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Manometer 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Manometer 2 Click" changes.

Do you want to report abuse regarding "Manometer 2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Manometer 2 Click

Manometer 2 Click carries the MS5525DSO-SB001GS digital pressure sensor, based on leading MEMS technology.

manometer2_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : I2C/SPI type

Software Support

We provide a library for the Manometer2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Manometer2 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void manometer2_cfg_setup ( manometer2_cfg_t *cfg );

  • Initialization function.

    MANOMETER2_RETVAL manometer2_init ( manometer2_t ctx, manometer2_cfg_t cfg );

Example key functions :

  • Generic read data function uint32_t manometer2_read_command ( manometer2_t *ctx, uint8_t reg_address );

  • Function read coeffitient

    void manometer2_read_coef ( manometer2_t *ctx );

  • Get pressure data function float manometer2_get_pressure ( manometer2_t *ctx, uint8_t oversampling_ratio );

Examples Description

This application is digital pressure sensor.

The demo application is composed of two sections :

Application Init

Initialization driver enable's - I2C, initialization Manometer 2 sensor MS5525DSO-SB001GS by read coeffitient value and start write log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    manometer2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    manometer2_cfg_setup( &cfg );
    MANOMETER2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    manometer2_init( &manometer2, &cfg );

    manometer2_read_coef( &manometer2 );
    log_printf( &logger, "        Initialization \r\n" );
    log_printf( &logger, "----------------------------- \r\n" );
    Delay_100ms( );
}

Application Task

This is a example which demonstrates the use of Manometer 2 Click board. Measured pressure and temperature value from sensor, calculate pressure [ PSI ] and temperature [ �C ], results are being sent to the Usart Terminal where you can track their changes. All data logs on usb uart for aproximetly every 3 sec when the data value changes.


void application_task (  )
{
    float temperature;
    float pressure;

    temperature = manometer2_get_temperature( &manometer2, MANOMETER2_CONVERT_4096 );
    Delay_10ms( );

    pressure = manometer2_get_pressure( &manometer2, MANOMETER2_CONVERT_4096 );
    Delay_10ms( );

    log_printf( &logger, " Pressure :  %.2f PSI \r\n", pressure );
    log_printf( &logger, " Temperature: %.2f C \r\n", temperature );
    log_printf( &logger, "----------------------------- \r\n" );

    Delay_1sec( );
    Delay_1sec( );
    Delay_1sec( );
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Manometer2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

mikroTFT - Example

0

This is a sample program which demonstrates the use of mikroTFT board.

[Learn More]

BLE 9 Click

0

BLE 9 Click is a fully embedded stand-alone Bluetooth 5.2 Energy connectivity module, equipped with the EFR32BG22 Series 2 Modules, an ultra-small, high-performing, standalone Bluetooth low energy module for easy integration of Bluetooth low energy connectivity (BLE) into various electronic devices. This module combines a high-performance Arm® Cortex®-M33 CPU microprocessor with FPU, and state-of-the-art power performance. Reliable and easy to use, BLE 9 Click is a perfect solution for development of various IoT applications, smart home applications, BLE enabled toys, advanced robotics, and other similar applications.

[Learn More]

LED Driver 16 Click

0

LED Driver 16 Click is a compact add-on board that simplifies the control of multiple LEDs. This board features the PCA9745B, an SPI-configurable sixteen-channel constant current LED driver from NXP Semiconductors. Each LED output has an 8-bit resolution (256 steps) fixed-frequency individual PWM controller that operates at 31.25kHz with an adjustable duty cycle from 0 to 100% to allow the LED to be set to a specific brightness value. Powered through a selected mikroBUS™ power rail, either 3.3V or 5V, it provides a maximum output current of 57mA per channel and multiple built-in protection functions that protect the circuit during abnormalities.

[Learn More]