TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (403 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (130 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140928 times)
  2. FAT32 Library (73493 times)
  3. Network Ethernet Library (58285 times)
  4. USB Device Library (48477 times)
  5. Network WiFi Library (44080 times)
  6. FT800 Library (43649 times)
  7. GSM click (30527 times)
  8. mikroSDK (29257 times)
  9. PID Library (27198 times)
  10. microSD click (26925 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

MCP1664 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: LED Drivers

Downloaded: 346 times

Not followed.

License: MIT license  

MCP1664 Click contains 4 high-power white LEDs. It carries the MCP1664, a high-voltage step-up LED driver from Microchip.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "MCP1664 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "MCP1664 Click" changes.

Do you want to report abuse regarding "MCP1664 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


MCP1664 Click

MCP1664 Click contains 4 high-power white LEDs. It carries the MCP1664, a high-voltage step-up LED driver from Microchip.

mcp1664_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jan 2020.
  • Type : PWM type

Software Support

We provide a library for the Mcp1664 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Mcp1664 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void mcp1664_cfg_setup ( mcp1664_cfg_t *cfg );

  • Initialization function.

    MCP1664_RETVAL mcp1664_init ( mcp1664_t ctx, mcp1664_cfg_t cfg );

Example key functions :

  • Start PWM module.

    void mcp1664_pwm_start ( mcp1664_t *ctx );

  • Stop PWM module.

    void mcp1664_pwm_stop ( mcp1664_t *ctx );

Examples Description

This application turn on and turn off white LEDs.

The demo application is composed of two sections :

Application Init

Enables GPIO and PWM, sets the frequency and duty cycle and enables PWM.


void application_init ( void )
{
    log_cfg_t log_cfg;
    mcp1664_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    mcp1664_cfg_setup( &cfg );
    MCP1664_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    mcp1664_init( &mcp1664, &cfg );

    mcp1664_set_duty_cycle( &mcp1664, duty_cycle );
    mcp1664_pwm_start( &mcp1664 );
    Delay_ms ( 1000 );
    log_printf( &logger, "------------------ \r\n" );
    log_printf( &logger, "  MCP1664  Click   \r\n" );
    log_printf( &logger, "------------------ \r\n" );
    Delay_ms ( 100 );
}

Application Task

This is a example which demonstrates the use of MCP1664 Click board. It shows how to enable the device and gradualy increase the duty cycle.


void application_task ( void )
{
    //  Task implementation.

    if ( duty_cycle > mcp1664.pwm_period )
    {
        duty_cycle = 5000;
    }

    mcp1664_set_duty_cycle ( &mcp1664, duty_cycle );
    duty_cycle += 50;
    Delay_100ms();

    log_printf( &logger,  "  Duty cycle is : %d  \r\n", duty_cycle );
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Mcp1664

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Brushless click

0

Brushless click carries Toshiba's TB6575FNG IC for driving 3-phase full-wave Brushless DC motors. The click is able to safely drive external motors with up to 32V/2A.Brushless click communicates with the target board MCU over the PWM pin, as well as INT, AN and RST pins. The board is designed to use a 5V power supply only.

[Learn More]

Compass 4 click

5

Compass 4 Click is an expansion board that can measure the three-axis magnetic field which is perfect for implementation in applications such as electric compasses. This board features AK09915, a complete 3-axis magnetic sensor with signal processing from AKM.

[Learn More]

Magnetic Rotary 4 Click

0

Magnetic Rotary 4 Click is a compact add-on board for accurate magnet-position sensing. This board features the AS5047D, an SPI-configurable high-resolution rotary position sensor for fast absolute angle measurement over a full 360-degree range from ams AG. The AS5047D is equipped with revolutionary integrated dynamic angle error compensation (DAEC™) with almost 0 latency and offers a robust design that suppresses the influence of any homogenous external stray magnetic field. It also comes with an onboard header reserved for incremental and commutation signals of their respective A/B/I and U/V/W signals alongside embedded self-diagnostics, including magnetic field strength, lost magnet, and other related diagnostic features.

[Learn More]