TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (392 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (123 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140554 times)
  2. FAT32 Library (73048 times)
  3. Network Ethernet Library (58051 times)
  4. USB Device Library (48224 times)
  5. Network WiFi Library (43833 times)
  6. FT800 Library (43296 times)
  7. GSM click (30360 times)
  8. mikroSDK (28994 times)
  9. PID Library (27119 times)
  10. microSD click (26723 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

MCP1664 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: LED Drivers

Downloaded: 285 times

Not followed.

License: MIT license  

MCP1664 Click contains 4 high-power white LEDs. It carries the MCP1664, a high-voltage step-up LED driver from Microchip.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "MCP1664 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "MCP1664 Click" changes.

Do you want to report abuse regarding "MCP1664 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


MCP1664 Click

MCP1664 Click contains 4 high-power white LEDs. It carries the MCP1664, a high-voltage step-up LED driver from Microchip.

mcp1664_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jan 2020.
  • Type : PWM type

Software Support

We provide a library for the Mcp1664 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Mcp1664 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void mcp1664_cfg_setup ( mcp1664_cfg_t *cfg );

  • Initialization function.

    MCP1664_RETVAL mcp1664_init ( mcp1664_t ctx, mcp1664_cfg_t cfg );

Example key functions :

  • Start PWM module.

    void mcp1664_pwm_start ( mcp1664_t *ctx );

  • Stop PWM module.

    void mcp1664_pwm_stop ( mcp1664_t *ctx );

Examples Description

This application turn on and turn off white LEDs.

The demo application is composed of two sections :

Application Init

Enables GPIO and PWM, sets the frequency and duty cycle and enables PWM.


void application_init ( void )
{
    log_cfg_t log_cfg;
    mcp1664_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    mcp1664_cfg_setup( &cfg );
    MCP1664_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    mcp1664_init( &mcp1664, &cfg );

    mcp1664_set_duty_cycle( &mcp1664, duty_cycle );
    mcp1664_pwm_start( &mcp1664 );
    Delay_ms ( 1000 );
    log_printf( &logger, "------------------ \r\n" );
    log_printf( &logger, "  MCP1664  Click   \r\n" );
    log_printf( &logger, "------------------ \r\n" );
    Delay_ms ( 100 );
}

Application Task

This is a example which demonstrates the use of MCP1664 Click board. It shows how to enable the device and gradualy increase the duty cycle.


void application_task ( void )
{
    //  Task implementation.

    if ( duty_cycle > mcp1664.pwm_period )
    {
        duty_cycle = 5000;
    }

    mcp1664_set_duty_cycle ( &mcp1664, duty_cycle );
    duty_cycle += 50;
    Delay_100ms();

    log_printf( &logger,  "  Duty cycle is : %d  \r\n", duty_cycle );
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Mcp1664

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

B102C Click

0

B102C Click is a compact add-on board designed for Bluetooth 5.0 (BLE) communication in various wireless applications. This board features the B102C, a Bluetooth module from Amphenol based on the Realtek RTL8762CMF chip. The board offers BLE v5.0 support, a 20MHz Arm® Cortex® M4F processor, and an integrated antenna for 2.4GHz communication, with low-power modes for optimal energy efficiency. It includes UART and USB Type-C connectivity, a PROG header for debugging, and fully programmable GPIOs.

[Learn More]

Heart Rate 8 Click

0

Heart Rate 8 Click is an optical biosensor Click board™, designed for heart-rate monitoring (HRM). This Click board™ employs a specialized sensor that incorporates three LED drivers and two photo-sensing elements, sensitive to green and IR light.

[Learn More]

4x4 RGB click

1

4x4 RGB click carries a matrix of 16 RGB LEDs and a MCP1826 low dropout regulator. The LED matrix is connected to the target board microcontroller through the mikroBUS RST pin. The board uses either a 3.3V or 5V power supply.

[Learn More]