TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (402 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (129 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140774 times)
  2. FAT32 Library (73360 times)
  3. Network Ethernet Library (58201 times)
  4. USB Device Library (48386 times)
  5. Network WiFi Library (43980 times)
  6. FT800 Library (43538 times)
  7. GSM click (30470 times)
  8. mikroSDK (29175 times)
  9. PID Library (27173 times)
  10. microSD click (26848 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

NDIR CO2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: Gas

Downloaded: 287 times

Not followed.

License: MIT license  

NDIR CO2 Click is an advanced integrated CO2 gas sensor system, which is able to measure an absolute CO2 concentration, by utilizing the CDM7160 integrated sensor.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "NDIR CO2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "NDIR CO2 Click" changes.

Do you want to report abuse regarding "NDIR CO2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


NDIR CO2 Click

NDIR CO2 Click is an advanced integrated CO2 gas sensor system, which is able to measure an absolute CO2 concentration, by utilizing the CDM7160 integrated sensor.

ndirco2_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : I2C type

Software Support

We provide a library for the NDIRCO2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for NDIRCO2 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void ndirco2_cfg_setup ( ndirco2_cfg_t *cfg );

  • Initialization function.

    NDIRCO2_RETVAL ndirco2_init ( ndirco2_t ctx, ndirco2_cfg_t cfg );

Example key functions :

  • CO2 Concentration Read function

    void ndirco2_read_co2 ( ndirco2_t ctx, uint8_t set_check_mode, uint16_t output_data );

  • Average Complete Check function

    uint8_t ndirco2_check_average_complete ( ndirco2_t *ctx );

  • Mode Set function

    void ndirco2_set_mode ( ndirco2_t *ctx, uint8_t select_mode );

Examples Description

This application measures absolute CO2 concetration.

The demo application is composed of two sections :

Application Init

Initializes I2C driver and performs driver reset and determines number of averaging measurements.


void application_init ( void )
{
    log_cfg_t log_cfg;
    ndirco2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    ndirco2_cfg_setup( &cfg );
    NDIRCO2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    ndirco2_init( &ndirco2, &cfg );

    Delay_ms ( 300 );

    ndirco2_reset( &ndirco2 );
    ndirco2_write_register( &ndirco2, NDIRCO2_AVERAGING_COUNT_REG, 0x03 );
    ndirco2_set_mode( &ndirco2, NDIRCO2_CONTINUOUS_OP_MODE );
    log_printf( &logger, "NDIR CO2 is initialized \r\n" );
    Delay_ms ( 200 );
}

Application Task

Reads CO2 concentration data in ppm unit after each completed measurement. One measurement is finished after 300 ms, and period between two measurements is 2 seconds. Results of measurements logs on USBUART.


void application_task ( )
{
    uint16_t co2_data;

    ndirco2_read_co2( &ndirco2, NDIRCO2_CHECK_EACH_MEASURE, &co2_data );
    log_printf( &logger, "CO2 concentration is: %d ppm \r\n", co2_data );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.NDIRCO2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

LTE Cat.1 2 Click

0

LTE Cat.1 2 Click (EU) is a compact add-on board that provides your application with complete LTE and VoLTE with CSFB functionalities. This board features the ELS62-E, a single antenna LTE cat.1bis module from Telit.

[Learn More]

Hall Current 5 Click

0

Hall Current 5 Click is a very accurate electric current measurement Click board™ based on the ACS733 IC. This IC is a galvanically isolated current sensor, which utilizes the Hall-effect principle.

[Learn More]

Current 5 Click

0

Current 5 Click is a compact add-on board that provides a precise and accurate current sensing solution. This board features the INA381, a high-speed current-sense amplifier with an integrated comparator from Texas Instruments. This device has selectable operating modes (transparent or latched) and detects overcurrent conditions by measuring the voltage developed across a current shunt resistor. Then it compares that voltage to a user-defined threshold limit set by the comparator reference potentiometer. The current-shunt monitor can measure differential voltage signals on common-mode voltages that vary from –0.2V to 26V, independent of the supply voltage. This Click board™ delivers higher performance to applications such as test and measurement, load and power supplies monitoring, low-side phase motor control, and many more.

[Learn More]