TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (387 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (120 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140168 times)
  2. FAT32 Library (72622 times)
  3. Network Ethernet Library (57644 times)
  4. USB Device Library (47957 times)
  5. Network WiFi Library (43554 times)
  6. FT800 Library (42942 times)
  7. GSM click (30140 times)
  8. mikroSDK (28670 times)
  9. PID Library (27057 times)
  10. microSD click (26552 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

OPTO 4 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.13

mikroSDK Library: 2.0.0.0

Category: Optocoupler

Downloaded: 201 times

Not followed.

License: MIT license  

Opto 4 Click is a galvanically isolated power switch, which uses a power MOSFET in combination with an optocoupler.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "OPTO 4 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "OPTO 4 Click" changes.

Do you want to report abuse regarding "OPTO 4 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


OPTO 4 Click

Opto 4 Click is a galvanically isolated power switch, which uses a power MOSFET in combination with an optocoupler.

opto4_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : dec 2019.
  • Type : GPIO type

Software Support

We provide a library for the OPTO4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for OPTO4 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void opto4_cfg_setup ( opto4_cfg_t *cfg );

  • Initialization function.

    OPTO4_RETVAL opto4_init ( opto4_t ctx, opto4_cfg_t cfg );

  • Click Default Configuration function.

    void opto4_default_cfg ( opto4_t *ctx );

Example key functions :

  • Function for output enable or disable

    void opto4_output_enable( opto4_t *ctx, uint8_t enable );

Examples Description

Opto 4 Click is a galvanically isolated power switch, which uses a power MOSFET in combination with an optocoupler.

The demo application is composed of two sections :

Application Init

Initialization driver init.


void application_init ( void )
{
    log_cfg_t log_cfg;
    opto4_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info(&logger, "---- Application Init ----");

    //  Click initialization.

    opto4_cfg_setup( &cfg );
    OPTO4_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    opto4_init( &opto4, &cfg );
}

Application Task

The Output voltage enable and disable every 3 sec.

void application_task ( )
{
    opto4_output_enable( &opto4, OPTO4_OUTPUT_ENABLE );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    opto4_output_enable( &opto4, OPTO4_OUTPUT_DISABLE );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.OPTO4

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

CapSense 2 Click

0

CapSense 2 Click is a compact add-on board that easily integrates projected capacitive touch into user's applications. This board features the CAP1114, a multi-channel capacitive touch sensor that takes human body capacitance as an input and directly provides the real-time sensor information via the I2C serial interface from Microchip. This board contains capacitive sensing elements, a 7-segment slider, two buttons, and four LED indicators that visually detect the activation on some of these parts. This Click board™ offers reliable and accurate sensing for any application that uses capacitive touch sensing functions.

[Learn More]

RS Transceiver Click

0

RS Transceiver is a compact add-on board that offers an interface between the TTL level UART and RS-232/RS-422/RS-485 communication buses. This board features the XR34350, an RS-232/RS-422/RS-485 serial transceiver with internal termination and wide output swing from MaxLinear. Integrated cable termination and four configuration modes allow all three protocols to be used interchangeably over a single cable over the DE-9 connector. All transmitter outputs and receiver inputs feature robust ESD protection and HBM up to ±15kV.

[Learn More]

G2C Click

0

Go to Cloud (G2C) Click is a gateway Click board™ which provides a simple and reliable connection to the Click Cloud platform, a cloud-based rapid prototyping environment, hosted by MikroElektronika. Go to Cloud (G2C) Click offers an unprecedented simplicity for adding Click Cloud connectivity to any embedded application, by utilizing the simple UART interface: it can be configured and managed using a minimal set of well-documented AT commands.

[Learn More]