TOP Contributors

  1. MIKROE (2655 codes)
  2. Alcides Ramos (353 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136768 times)
  2. FAT32 Library (69976 times)
  3. Network Ethernet Library (55944 times)
  4. USB Device Library (46270 times)
  5. Network WiFi Library (41888 times)
  6. FT800 Library (41183 times)
  7. GSM click (28987 times)
  8. PID Library (26414 times)
  9. mikroSDK (26372 times)
  10. microSD click (25381 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Pot 3 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.15

mikroSDK Library: 2.0.0.0

Category: Potentiometers

Downloaded: 104 times

Not followed.

License: MIT license  

POT 3 Click is a Click board� with the accurate selectable reference voltage output. By employing a high-quality 11mm, metal shaft potentiometer, this Click board� can provide very accurate voltage output.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Pot 3 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Pot 3 click" changes.

Do you want to report abuse regarding "Pot 3 click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Pot 3 click

POT 3 Click is a Click board� with the accurate selectable reference voltage output. By employing a high-quality 11mm, metal shaft potentiometer, this Click board can provide very accurate voltage output.

pot3_click.png

click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : SPI type

Software Support

We provide a library for the Pot3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Pot3 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void pot3_cfg_setup ( pot3_cfg_t *cfg );

  • Initialization function.

    POT3_RETVAL pot3_init ( pot3_t ctx, pot3_cfg_t cfg );

Example key functions :

  • This function reads the result of AD conversion.

    uint16_t pot3_read_adc ( pot3_t* ctx );

  • This function reads the averaged result of AD conversions.

    uint16_t pot3_read_avg_adc ( pot3_t* ctx, uint16_t n_samples );

  • This function returns VOUT value calculated to millivolts.

    uint16_t pot3_get_vout ( pot3_t* ctx, uint8_t vref_sel, uint16_t n_samples );

Examples Description

This example gets voltage, calculates it to millivolts and then logs it to the terminal.

The demo application is composed of two sections :

Application Init

Initializes device and sets required pins.


void application_init ( void )
{
    log_cfg_t log_cfg;
    pot3_cfg_t pot3_cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    pot3_cfg_setup( &pot3_cfg );
    POT3_MAP_MIKROBUS( pot3_cfg, MIKROBUS_1 );
    pot3_init( &pot3, &pot3_cfg );
}

Application Task

Reads VOUT value calculated to millivolts with 2000 conversions included in one measurement cycle.


void application_task ( void )
{
    voltage_mv = pot3_get_vout( &pot3, POT3_VREF_2V, 2000);
    log_printf( &logger, " VOUT : %d mV\r\n", voltage_mv );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Pot3

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Hall Current 12 click

0

Hall Current 12 Click is a compact add-on board that provides economical and precise AC or DC current sensing solutions. This board features the TMCS1100, a galvanically isolated Hall-effect current sensor capable of DC or AC current measurement with high accuracy, excellent linearity, and temperature stability from Texas Instruments. It enables the lowest drift, <1% full-scale error, and highest accuracy over time and temperature. It also provides a reliable 600V lifetime working voltage and 3kVRMS isolation between the current path and circuitry with uni/bidirectional current sensing. Besides, the user is allowed to process the output signal in analog or digital form.

[Learn More]

Vibra Sense 2 click

0

Vibra Sense 2 Click is a compact add-on board that contains a piezo sensor suitable for vibration measurements. This board features the LDT0-028K, a flexible 28 μm thick piezoelectric PVDF polymer film with screen-printed silver ink electrodes, laminated to a 0.125 mm polyester substrate, and fitted with two crimped contacts from TE Connectivity.

[Learn More]

I2C isolator click

0

I2C Isolator click carries ISO1540, a low-power, bidirectional isolator compatible with I2C interfaces. On the board, the Texas Instruments chip is connected to two sets of I2C pins, one on the mikroBUS connector (SDA, SCL), the other on the upper edge of the board (SCL2, SDL2).

[Learn More]