TOP Contributors

  1. MIKROE (2656 codes)
  2. Alcides Ramos (353 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136785 times)
  2. FAT32 Library (69980 times)
  3. Network Ethernet Library (55951 times)
  4. USB Device Library (46274 times)
  5. Network WiFi Library (41889 times)
  6. FT800 Library (41184 times)
  7. GSM click (28988 times)
  8. PID Library (26420 times)
  9. mikroSDK (26374 times)
  10. microSD click (25382 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Pwm Driver click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: Brushed

Downloaded: 143 times

Not followed.

License: MIT license  

This application is controls the speed DC motors.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Pwm Driver click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Pwm Driver click" changes.

Do you want to report abuse regarding "Pwm Driver click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Pwm Driver click

If you need to control DC motors with loads up to 10A, PWM driver click is the perfect solution, thanks to the Silicon Lab Si8711CC one-channel isolator.

pwmdriver_click.png

click Product page


Click library

  • Author : Nikola Peric
  • Date : Feb 2022.
  • Type : PWM type

Software Support

We provide a library for the PwmDriver Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for PwmDriver Click driver.

Standard key functions :

  • Config Object Initialization function.

    void pwmdriver_cfg_setup ( pwmdriver_cfg_t *cfg );

  • Initialization function.

    PWMDRIVER_RETVAL pwmdriver_init ( pwmdriver_t ctx, pwmdriver_cfg_t cfg );

  • Click Default Configuration function.

    void pwmdriver_default_cfg ( pwmdriver_t *ctx );

Example key functions :

  • Generic sets PWM duty cycle

    void pwmdriver_set_duty_cycle ( pwmdriver_t *ctx, pwm_data_t duty_cycle );

  • Stop PWM module.

    void pwmdriver_pwm_stop ( pwmdriver_t *ctx );

  • Start PWM module

    void pwmdriver_pwm_start ( pwmdriver_t *ctx );

Examples Description

This application is controls the speed DC motors.

The demo application is composed of two sections :

Application Init

Initialization driver enables - GPIO, PWM initialization set PWM duty cycle and PWM frequency, start PWM, enable the engine, and start to write log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    pwmdriver_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    pwmdriver_cfg_setup( &cfg );
    PWMDRIVER_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    pwmdriver_init( &pwmdriver, &cfg );

    Delay_ms ( 100 );

    log_printf( &logger, "   Initialization PWM  \r\n  " );
    pwmdriver_set_duty_cycle( &pwmdriver, 0.0 );
    pwmdriver_pwm_start( &pwmdriver );
    Delay_ms ( 1000 );
    log_info( &logger, "---- Application Task ----" );
}

Application Task

This is an example that demonstrates the use of the PWM driver Click board. This example shows the automatic control of PWM, the first increases duty cycle and then the duty cycle is falling. Results are being sent to the Usart Terminal where you can track their changes.


void application_task ( void )
{
    static int8_t duty_cnt = 1;
    static int8_t duty_inc = 1;
    float duty = duty_cnt / 10.0;

    pwmdriver_set_duty_cycle ( &pwmdriver, duty );
    log_printf( &logger, "Duty: %d%%\r\n", ( uint16_t )( duty_cnt * 10 ) );
    Delay_ms ( 500 );

    if ( 10 == duty_cnt ) 
    {
        duty_inc = -1;
    }
    else if ( 0 == duty_cnt ) 
    {
        duty_inc = 1;
    }
    duty_cnt += duty_inc;
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.PwmDriver

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

AudioAmp 8 click

0

AudioAmp 8 Click is a compact add-on board that reproduces input audio signal at sound-producing output elements, with desired volume and power levels. This board features the MA12070, a super-efficient audio power amplifier from Infineon Technologies. This I2C configurable audio amplifier is based on proprietary multi-level switching technology, enabling low power loss during operation. It supports a supply voltage range from 4 to 26V, allowing it to be used in many applications. Besides, it is equipped with protection features, allowing a reliable operation.

[Learn More]

Accel 14 click

0

Accel 14 Click is digital acceleration and vibration sensor Click board™. It features an ultra-wide bandwidth, low-noise, 3-axis digital vibration sensor, labeled as IIS3DWB, from STMicroelectronics. This Click board™ allows selectable full-scale acceleration measurements in ranges of ±2 g, ±4 g, ±8, and ±16 g in three axes, and it’s capable of measuring accelerations with a bandwidth up to 6 kHz with an output data rate of 26.7 kHz.

[Learn More]

Magic RFID click

0

Magic RFID Click is a compact add-on board that contains an embedded RFID module. This board features the M6E-NANO, UHF RFID module with ultra-low power consumption from JADAK. Supporting the EPC Gen2V2 and ISO 18000-63 standard, the M6E-NANO module is available for global use. It operates in the Ultra High Frequency (UHF) band in a range from 859 up to 930MHz and can be used for write/read applications.

[Learn More]