TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141825 times)
  2. FAT32 Library (74956 times)
  3. Network Ethernet Library (59317 times)
  4. USB Device Library (49308 times)
  5. Network WiFi Library (45108 times)
  6. FT800 Library (44676 times)
  7. GSM click (31287 times)
  8. mikroSDK (30215 times)
  9. microSD click (27664 times)
  10. PID Library (27564 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Thunder Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.18

mikroSDK Library: 2.0.0.0

Category: Miscellaneous

Downloaded: 512 times

Not followed.

License: MIT license  

Thunder Click features AS3935 lightning sensor as well as MA5532 coil antenna. It detects the presence and proximity of potentially hazardous lightning activity in the vicinity and provides estimated distance to the center of the storm. It can also provide information on the noise level. Thunder Click communicates with the target board microcontroller via SPI and INT lines. The board is designed to use 3.3V or 5V power supply. LED diode (GREEN) indicates the presence of power supply.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Thunder Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Thunder Click" changes.

Do you want to report abuse regarding "Thunder Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Thunder Click

Thunder Click features AS3935 lightning sensor as well as MA5532 coil antenna. It detects the presence and proximity of potentially hazardous lightning activity in the vicinity and provides estimated distance to the center of the storm. It can also provide information on the noise level. Thunder Click communicates with the target board microcontroller via SPI and INT lines. The board is designed to use 3.3V or 5V power supply. LED diode (GREEN) indicates the presence of power supply.

thunder_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jan 2020.
  • Type : SPI type

Software Support

We provide a library for the Thunder Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Thunder Click driver.

Standard key functions :

  • thunder_cfg_setup Config Object Initialization function.

    void thunder_cfg_setup ( thunder_cfg_t *cfg ); 
  • thunder_init Initialization function.

    err_t thunder_init ( thunder_t *ctx, thunder_cfg_t *cfg );
  • thunder_default_cfg Click Default Configuration function.

    void thunder_default_cfg ( thunder_t *ctx );

Example key functions :

  • thunder_check_int Function checks and returns the interrupt value.

    uint8_t thunder_check_int ( thunder_t *ctx );
  • thunder_get_storm_info Function gets energy of the single lightning and distance estimation for the head of the storm.

    void thunder_get_storm_info ( thunder_t *ctx, uint32_t *energy_out, uint8_t *distance_out );
  • thunder_read_reg Function reads a data byte from the registers.

    err_t thunder_read_reg ( thunder_t *ctx, uint8_t reg, uint8_t *data_out );

Examples Description

This application detects the presence and proximity of potentially lightning activity and provides estimated distance to the center of the storm. It can also provide information on the noise level.

The demo application is composed of two sections :

Application Init

Initializes SPI driver and performs the reset command and RCO calibrate command. Also configures the device for working properly.


void application_init ( void )
{
    log_cfg_t log_cfg;
    thunder_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    thunder_cfg_setup( &cfg );
    THUNDER_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    thunder_init( &thunder, &cfg );

    thunder_default_cfg( &thunder );
    log_info( &logger, " Application Task " );
}

Application Task

Checks if the interrupt event has occured (Listening mode) and after that reads the storm information and logs the results on the USB UART.


void application_task ( void )
{
    storm_mode = thunder_check_int ( &thunder );

    if ( THUNDER_NOISE_LEVEL_INTERR == storm_mode )
    {
        log_printf( &logger, "Noise level too high\r\n\n" );
    }
    else if ( THUNDER_DISTURBER_INTERR == storm_mode )
    {
        log_printf( &logger, "Disturber detected\r\n\n" );
    }
    else if ( THUNDER_LIGHTNING_INTERR == storm_mode )
    {
        thunder_get_storm_info( &thunder, &storm_energy, &storm_distance );
        log_printf( &logger, "Energy of the single lightning : %lu\r\n", storm_energy );
        log_printf( &logger, "Distance estimation : %u km\r\n\n", ( uint16_t ) storm_distance );
        // Reset configuration to prepare for the next measurement
        thunder_default_cfg( &thunder );
    }
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Thunder

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Stepper Click

0

Stepper Click is a complete solution for driving bipolar stepper motors with full/half and micro-steps. It features the A3967 IC from Allegro Microsystems with proprietary Satlington™ sink drivers on its outputs, which ensure high efficiency and reliable operation of the internal H-Bridges. This IC has the integrated translation section, used to simplify the control: using simple step control inputs from the host MCU, the stepper motor can be driven in both directions, with the predetermined step sizes. In addition, the output current is regulated allowing for noiseless operation of the stepper motor, with no resonance and ringing typically observed at unregulated stepper driver designs.

[Learn More]

4G LTE 3 E Click

0

4G LTE 3 Click (for Europe) is a compact add-on board for reliable LTE connectivity, offering medium data speeds and extensive network coverage. This board features the LEXI-R10801D, a single-mode LTE Cat 1bis module from u-blox optimized for professional-grade applications in the EMEA, APAC, and Brazilian regions. The module supports various LTE FDD bands (1, 3, 5, 7, 8, 20, and 28), features download speeds of up to 10Mbps and upload speeds of 5Mbps, and integrates an embedded Wi-Fi scan for indoor positioning with u-blox CellLocate® geolocation capabilities. It includes a UART interface for communication, USB Type C for power and firmware updates, and versatile control options like GPIO pins and visual indicators for network and power status.

[Learn More]

Earthquake Click

0

Earthquake Click carries D7S, the world’s smallest high-precision seismic sensor from Omron. The Click is designed to run on either 3.3V or 5V power supply. It communicates with the target MCU over I2C interface, with additional functionality provided by the following pins on the mikroBUS™ line: PWM, INT, CS.

[Learn More]