TOP Contributors

  1. MIKROE (2654 codes)
  2. Alcides Ramos (352 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136749 times)
  2. FAT32 Library (69954 times)
  3. Network Ethernet Library (55942 times)
  4. USB Device Library (46268 times)
  5. Network WiFi Library (41888 times)
  6. FT800 Library (41181 times)
  7. GSM click (28986 times)
  8. PID Library (26414 times)
  9. mikroSDK (26367 times)
  10. microSD click (25377 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Thunder click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: Miscellaneous

Downloaded: 231 times

Not followed.

License: MIT license  

Thunder click features AS3935 lightning sensor as well as MA5532 coil antenna. It detects the presence and proximity of potentially hazardous lightning activity in the vicinity and provides estimated distance to the center of the storm. It can also provide information on the noise level. Thunder click communicates with the target board microcontroller via SPI and INT lines. The board is designed to use 3.3V or 5V power supply. LED diode (GREEN) indicates the presence of power supply.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Thunder click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Thunder click" changes.

Do you want to report abuse regarding "Thunder click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Thunder click

Thunder click features AS3935 lightning sensor as well as MA5532 coil antenna. It detects the presence and proximity of potentially hazardous lightning activity in the vicinity and provides estimated distance to the center of the storm. It can also provide information on the noise level. Thunder click communicates with the target board microcontroller via SPI and INT lines. The board is designed to use 3.3V or 5V power supply. LED diode (GREEN) indicates the presence of power supply.

thunder_click.png

click Product page


Click library

  • Author : MikroE Team
  • Date : Jan 2020.
  • Type : SPI type

Software Support

We provide a library for the Thunder Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Thunder Click driver.

Standard key functions :

  • thunder_cfg_setup Config Object Initialization function.

    void thunder_cfg_setup ( thunder_cfg_t *cfg ); 
  • thunder_init Initialization function.

    err_t thunder_init ( thunder_t *ctx, thunder_cfg_t *cfg );
  • thunder_default_cfg Click Default Configuration function.

    void thunder_default_cfg ( thunder_t *ctx );

Example key functions :

  • thunder_check_int Function checks and returns the interrupt value.

    uint8_t thunder_check_int ( thunder_t *ctx );
  • thunder_get_storm_info Function gets energy of the single lightning and distance estimation for the head of the storm.

    void thunder_get_storm_info ( thunder_t *ctx, uint32_t *energy_out, uint8_t *distance_out );
  • thunder_read_reg Function reads a data byte from the registers.

    err_t thunder_read_reg ( thunder_t *ctx, uint8_t reg, uint8_t *data_out );

Examples Description

This application detects the presence and proximity of potentially lightning activity and provides estimated distance to the center of the storm. It can also provide information on the noise level.

The demo application is composed of two sections :

Application Init

Initializes SPI driver and performs the reset command and RCO calibrate command. Also configures the device for working properly.


void application_init ( void )
{
    log_cfg_t log_cfg;
    thunder_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    thunder_cfg_setup( &cfg );
    THUNDER_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    thunder_init( &thunder, &cfg );

    thunder_default_cfg( &thunder );
    log_info( &logger, " Application Task " );
}

Application Task

Checks if the interrupt event has occured (Listening mode) and after that reads the storm information and logs the results on the USB UART.


void application_task ( void )
{
    storm_mode = thunder_check_int ( &thunder );

    if ( THUNDER_NOISE_LEVEL_INTERR == storm_mode )
    {
        log_printf( &logger, "Noise level too high\r\n\n" );
    }
    else if ( THUNDER_DISTURBER_INTERR == storm_mode )
    {
        log_printf( &logger, "Disturber detected\r\n\n" );
    }
    else if ( THUNDER_LIGHTNING_INTERR == storm_mode )
    {
        thunder_get_storm_info( &thunder, &storm_energy, &storm_distance );
        log_printf( &logger, "Energy of the single lightning : %lu\r\n", storm_energy );
        log_printf( &logger, "Distance estimation : %u km\r\n\n", ( uint16_t ) storm_distance );
        // Reset configuration to prepare for the next measurement
        thunder_default_cfg( &thunder );
    }
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Thunder

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

PWR Meter 2 click

0

PWR Meter 2 click is a compact and accurate power monitoring Click board™, capable of measuring and monitoring voltage up to 24V and current up to 5A.

[Learn More]

ECG GSR Click

0

ECG GSR click is a complete solution for PPG, ECG and GSR application development, utilizing a specialized IC with a clinical-grade analog front-end (AFE) and electrical front-end. ECG GSR click uses the AS7030B IC, an ultra-low power, multi-channel bio-sensor, which features a wide range of different options, making it an ideal solution for development of blood oxygen level, heart rate and galvanic skin response monitoring applications, fitness applications, for the ECG bio-authentication, and similar applications related to heart monitoring. ECG GSR click is also equipped with the 3.5mm electrodes connectors, making it ready to be used out of the box.

[Learn More]

Ambient 20 click

0

Ambient 20 Click is a compact add-on board used to measure the amount of the present ambient light. This board features the BU27030NUC, a 16-bit digital-output ambient light sensor with an I2C interface from Rohm Semiconductor. The BU27030NUC has a flexible and wide operating range of up to 20klx with a maximum resolution of 0.0007lux/count, providing an excellent responsivity close to the human eyes' response. It also features inherent 50Hz/60Hz light noise rejection and excellent IR-cut characteristics for high robustness at high sensitivity.

[Learn More]