TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142066 times)
  2. FAT32 Library (75294 times)
  3. Network Ethernet Library (59491 times)
  4. USB Device Library (49522 times)
  5. Network WiFi Library (45288 times)
  6. FT800 Library (44914 times)
  7. GSM click (31432 times)
  8. mikroSDK (30441 times)
  9. microSD click (27802 times)
  10. PID Library (27622 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

UNI HALL Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: Magnetic

Downloaded: 439 times

Not followed.

License: MIT license  

UNI HALL Click is a simple solution for adding an unipolar Hall switch to your design. It carries the Melexis US5881 unipolar Hall-effect switch and a 74LVC1T45 single bit, dual supply translating transceiver.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "UNI HALL Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "UNI HALL Click" changes.

Do you want to report abuse regarding "UNI HALL Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


UNI HALL Click

UNI HALL Click is a simple solution for adding an unipolar Hall switch to your design. It carries the Melexis US5881 unipolar Hall-effect switch and a 74LVC1T45 single bit, dual supply translating transceiver.

unihall_click.png

Click Product page


Click library

  • Author : Mikroe Team
  • Date : Dec 2019.
  • Type : GPIO type

Software Support

We provide a library for the UniHall Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for UniHall Click driver.

Standard key functions :

  • Config Object Initialization function.

    void unihall_cfg_setup ( unihall_cfg_t *cfg );

  • Initialization function.

    UNIHALL_RETVAL unihall_init ( unihall_t ctx, unihall_cfg_t cfg );

  • Click Default Configuration function.

    void unihall_default_cfg ( unihall_t *ctx );

Example key functions :

  • Detecting north pole magnetic fields status function.

    uint8_t unihall_detecting_magnetic_fields ( unihall_t *ctx );

Examples Description

This is a example which demonstrates the use of UNI HALL Click board.

The demo application is composed of two sections :

Application Init

Initialization driver enable's - GPIO and start write log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    unihall_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_printf(&logger, " --- Application Init ---\r\n");

    //  Click initialization.

    unihall_cfg_setup( &cfg );
    UNIHALL_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    unihall_init( &unihall, &cfg );

    unihall_state = UNIHALL_NORTH_POLE_DETECTED;
    unihall_state_old = UNIHALL_NORTH_POLE_DETECTED;

    log_printf(&logger, "---------------------------\r\n");
    log_printf(&logger, "        Initialization     \r\n");
    log_printf(&logger, "---------------------------\r\n");
    log_printf(&logger, " Detecting magnetic fields \r\n");
    log_printf(&logger, "---------------------------\r\n");

    Delay_ms ( 100 );
}

Application Task

Detect the north pole magnetic fields near the UNI HALL Click. Results are being sent to the Usart Terminal where you can track their changes. All data logs on usb uart when magnetic field is detected.


void application_task ( void )
{
    unihall_state = unihall_detecting_magnetic_fields( &unihall );

    if ( ( unihall_state == UNIHALL_NORTH_POLE_NOT_DETECTED ) && ( unihall_state_old == UNIHALL_NORTH_POLE_DETECTED ) )
    {
        unihall_state_old = UNIHALL_NORTH_POLE_NOT_DETECTED;
        log_printf(&logger, "      ~ NOT DETECTED ~\r\n");
    }

    if ( ( unihall_state == UNIHALL_NORTH_POLE_DETECTED ) && ( unihall_state_old == UNIHALL_NORTH_POLE_NOT_DETECTED ) )
    {

        log_printf(&logger, "        ~ DETECTED ~\r\n");
        unihall_state_old = UNIHALL_NORTH_POLE_DETECTED;
    }
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.UniHall

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Stepper 8 Click

0

Stepper 8 Click is a motor control add on board based on TC78H670FTG from Toshiba, a clock-in and serial controlled Bipolar Stepping Motor Driver which can drive a 128 micro-stepping motor with a power supply ranging from 2.5V to 16V for wide range of applications includes USB-powered, battery-powered, and standard 9-12V system devices. A perfect solution for driving stepper motors in security cameras, portable printers, handheld scanners, pico-projectors, smartphones and many more.

[Learn More]

CAN FD click

5

CAN FD Click is a transceiver designed for HS CAN networks up to 5 Mbit/s in automotive and industrial applications. As an interface between the physical bus layer and the CAN protocol controller, the TLE9252V drives the signals to the bus and protects the microcontroller against interferences generated within the network.

[Learn More]

Gyro 2 click

6

The Gyro 2 click is a three-axis digital angular rate sensor which can sense the angular movement and velocity in three perpendicular axes. The Click board is equipped with the FXAS21002C, a three-axis integrated angular rate gyroscope.

[Learn More]