TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141277 times)
  2. FAT32 Library (74088 times)
  3. Network Ethernet Library (58715 times)
  4. USB Device Library (48826 times)
  5. Network WiFi Library (44525 times)
  6. FT800 Library (44073 times)
  7. GSM click (30804 times)
  8. mikroSDK (29654 times)
  9. PID Library (27355 times)
  10. microSD click (27251 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

MIC 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.15

mikroSDK Library: 2.0.0.0

Category: Microphone

Downloaded: 370 times

Not followed.

License: MIT license  

MIC 2 Click is equipped with a small electret microphone, accompanied by a suitable pre-amplifying circuit. The small electret microphone is not capable of providing sufficient line-level output; therefore, the pre-amp has to be used

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "MIC 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "MIC 2 Click" changes.

Do you want to report abuse regarding "MIC 2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


MIC 2 Click

MIC 2 Click is equipped with a small electret microphone, accompanied by a suitable pre-amplifying circuit. The small electret microphone is not capable of providing sufficient line-level output; therefore, the pre-amp has to be used

mic2_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jan 2020.
  • Type : ADC type

Software Support

We provide a library for the Mic2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Mic2 Click driver.

Standard key functions :

  • mic2_cfg_setup Config Object Initialization function.

    void mic2_cfg_setup ( mic2_cfg_t *cfg ); 
  • mic2_init Initialization function.

    err_t mic2_init ( mic2_t *ctx, mic2_cfg_t *cfg );

Example key functions :

  • mic2_set_potentiometer This function set the value of digital potentiometer.

    void mic2_set_potentiometer ( mic2_t *ctx, uint8_t ptt_value );
  • mic2_read_an_pin_value This function reads results of AD conversion of the AN pin.

    err_t mic2_read_an_pin_value ( mic2_t *ctx, uint16_t *data_out );
  • mic2_read_an_pin_voltage This function reads results of AD conversion of the AN pin and converts them to proportional voltage level.

    err_t mic2_read_an_pin_voltage ( mic2_t *ctx, float *data_out );

Example Description

This range is suited for audio and/or speech applications.

The demo application is composed of two sections :

Application Init

Initializes the driver and logger and sets the digital potentiometer.


void application_init ( void )
{
    log_cfg_t log_cfg;
    mic2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    mic2_cfg_setup( &cfg );
    MIC2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    mic2_init( &mic2, &cfg );

    mic2_set_potentiometer( &mic2, 35 );
    log_info( &logger, " Application Task " );
}

Application Task

Reads the AN pin voltage and displays the results on the USB UART every 100ms.


void application_task ( void )
{
    float voltage = 0;
    if ( MIC2_OK == mic2_read_an_pin_voltage ( &mic2, &voltage ) ) 
    {
        log_printf( &logger, " AN Voltage : %.3f[V]\r\n\n", voltage );
        Delay_ms ( 100 );
    }
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Mic2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

ClockGen 2 demo example

0

This example is made to demonstrate the operation of the ClockGen 2 click.

[Learn More]

Secure 5 click

0

Secure 5 Click carries the ATECC508A cryptographic coprocessor with secure hardware-based key storage, from Microchip. The ATECC508A includes an EEPROM array which can be used for storage of up to 16 keys, certificates, miscellaneous read/write, read-only or secret data, consumption logging, and security configurations.

[Learn More]

Ambient 17 Click

0

Ambient 17 Click is a compact add-on board used to measure the amount of the present ambient light. This board features the TSL2572, a digital-output ambient light sensor with an I2C interface from ams AG. The TSL2572 can detect a wide range of illuminance up to 60klx and provides excellent responsivity close to the human eyes' response. It is designed to control the brightness in various applications based on ambient light availability, brightness for optimum visibility, and energy efficiency. Operation in a temperature range of -30°C to 70°C ensures stable operation under extreme conditions.

[Learn More]