TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (403 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (132 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140969 times)
  2. FAT32 Library (73516 times)
  3. Network Ethernet Library (58322 times)
  4. USB Device Library (48510 times)
  5. Network WiFi Library (44134 times)
  6. FT800 Library (43689 times)
  7. GSM click (30547 times)
  8. mikroSDK (29295 times)
  9. PID Library (27220 times)
  10. microSD click (26931 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Counter Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.13

mikroSDK Library: 2.0.0.0

Category: Rotary encoder

Downloaded: 454 times

Not followed.

License: MIT license  

Counter Click carries an LS7366R 32-bit quadrature counter. The top of the board has a pinout for interfacing with incremental encoders. The interface has ENCA and ENCB pins, along with ENCI, which is a programmable index.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Counter Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Counter Click" changes.

Do you want to report abuse regarding "Counter Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Counter Click

Counter Click carries an LS7366R 32-bit quadrature counter. The top of the board has a pinout for interfacing with incremental encoders. The interface has ENCA and ENCB pins, along with ENCI, which is a programmable index.

counter_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jan 2020.
  • Type : SPI type

Software Support

We provide a library for the Counter Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Counter Click driver.

Standard key functions :

  • Config Object Initialization function.

    void counter_cfg_setup ( counter_cfg_t *cfg );

  • Initialization function.

    COUNTER_RETVAL counter_init ( counter_t ctx, counter_cfg_t cfg );

  • Click Default Configuration function.

    void counter_default_cfg ( counter_t *ctx );

Example key functions :

  • This function reads CNTR, using Click object.

    int32_t counter_read_cntr ( counter_t *ctx );

  • This function reads STR, using Click object.

    uint8_t counter_read_str ( counter_t *ctx );

  • This function reads OTR, using Click object.

    int32_t counter_read_otr ( counter_t *ctx );

Examples Description

This application measures the speed and the position of the DC motor shafts.

The demo application is composed of two sections :

Application Init

Initializes driver init and chip init


void application_init ( void )
{
    log_cfg_t log_cfg;
    counter_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    counter_cfg_setup( &cfg );
    COUNTER_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    counter_init( &counter, &cfg );

    counter_default_cfg( &counter );
    Delay_ms ( 300 );
}

Application Task

Reads data from the CNTR register and calculates the speed of the motor in Rad/s. All data is being displayed on the USB UART terminal where you can track their changes. The CNTR is a software configurable 8, 16, 24 or 32-bit up/down counter which counts the up/down pulses resulting from the quadrature clocks applied at the A and B inputs, or alternatively, in non-quadrature mode, pulses applied at the A input.


void application_task ( void )
{
    count = counter_read_cntr( &counter );
    log_printf( &logger, "Counter: %ld\r\n",  count );
    speed = ( float ) ( count - count_old ) / 3600.0;
    speed *= 6.283185;
    log_printf( &logger, "Speed: %.4f Rad/s\r\n",  speed );
    count_old = count;
    log_printf( &logger, "-------------------------\r\n" );
    Delay_ms ( 1000 );
}  

NOTE

An appropriate motor with optical encoder needs to be connected to the Click board.

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Counter

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Surface Temp click

5

The Surface Temp Click is a Click board equipped with the ADT7420, high accuracy digital temperature sensor offering breakthrough performance over a wide industrial range. Surface Temp Click is supported by a mikroSDK compliant library, which includes functions that simplify software development.

[Learn More]

Analog MUX Click

0

Analog MUX Click is a Click board™ that switches one of the sixteen inputs to one output. It employs the CD74HC4067, a High-Speed CMOS Logic 16-Channel Analog Multiplexer/Demultiplexer, produced by Texas Instruments.

[Learn More]

NINA-W152 Click

0

NINA-W152 Click is a compact add-on board designed for seamless integration of Wi-Fi and Bluetooth communication into your projects. Based on the NINA-W152 multi-radio module from u-blox, this Click board™ provides dual-mode wireless connectivity, including Wi-Fi 802.11b/g/n and Bluetooth BR/EDR v4.2+EDR and Bluetooth Low Energy v4.2. It features an internal PIFA antenna for optimal performance and supports communication through UART and SPI interfaces, with secure boot and enterprise-level security protocols (WPA2/WPA3) ensuring reliable operation.

[Learn More]