We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.17
mikroSDK Library: 2.0.0.0
Category: Magnetic
Downloaded: 228 times
Not followed.
License: MIT license
This application use to determine angle position
Do you want to subscribe in order to receive notifications regarding "3D Hall Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "3D Hall Click" changes.
Do you want to report abuse regarding "3D Hall Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
3700_3d_hall_click.zip [410.17KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
3D Hall Click carries the MLX90333 Triaxis Hall sensor, capable of detecting the position of any magnet in nearby space. It does so by being sensitive to three components of flux density (BX, BY, BZ)
We provide a library for the c3DHall Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.
This library contains API for c3DHall Click driver.
Config Object Initialization function.
void c3dhall_cfg_setup ( c3dhall_cfg_t *cfg );
Initialization function.
C3DHALL_RETVAL c3dhall_init ( c3dhall_t ctx, c3dhall_cfg_t cfg );
Read 8 bytes data from sensor function.
void c3dhall_read_all_data ( c3dhall_t ctx, c3dhall_all_data_t all_data );
Calculate angle function.
uint8_t c3dhall_calculate_angle ( c3dhall_t *ctx, uint16_t data_angle );
This application use to determine angle position.
The demo application is composed of two sections :
Initialization driver enable's - SPI and start write log.
void application_init ( void )
{
log_cfg_t log_cfg;
c3dhall_cfg_t cfg;
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, "---- Application Init ----" );
// Click initialization.
c3dhall_cfg_setup( &cfg );
C3DHALL_MAP_MIKROBUS( cfg, MIKROBUS_1 );
c3dhall_init( &c3dhall, &cfg );
Delay_100ms( );
}
This is a example which demonstrates the use of 3D Hall Click board. 3D Hall Click communicates with register via SPI by read data from register and calculate Alpha and Beta angle position. Results are being sent to the Usart Terminal where you can track their changes. All data logs on usb uart.
void application_task ( void )
{
c3dhall_all_data_t all_data;
uint8_t angle_alpha;
uint8_t angle_beta;
c3dhall_read_all_data( &c3dhall, &all_data );
Delay_100ms( );
if ( ( all_data.data_error ) == C3DHALL_NO_ERRORS )
{
angle_alpha = c3dhall_calculate_angle( &c3dhall, all_data.data_angle_a );
angle_beta = c3dhall_calculate_angle( &c3dhall, all_data.data_angle_b );
log_printf( &logger, " Alpha : %u\r\n", ( uint16_t ) angle_alpha );
log_printf( &logger, " Beta : %u\r\n", ( uint16_t ) angle_beta );
log_printf( &logger, "-------------------------\r\n", angle_beta );
}
else
{
if ( all_data.data_error == C3DHALL_F_ADCMONITOR )
log_printf( &logger, " ADC Failure \r\n" );
else if ( all_data.data_error == C3DHALL_F_ADCSATURA )
log_printf( &logger, " Electrical failure \r\n" );
else if ( all_data.data_error == C3DHALL_F_GAINTOOLOW )
log_printf( &logger, " Gain code is less \r\n" );
else if ( all_data.data_error == C3DHALL_F_GAINTOOHIGH )
log_printf( &logger, " Gain code is greater \r\n" );
else if ( all_data.data_error == C3DHALL_F_NORMTOOLOW )
log_printf( &logger, " Fast norm below 30 \r\n" );
else if ( all_data.data_error == C3DHALL_F_FIELDTOOLOW )
log_printf( &logger, " The norm is less \r\n" );
else if ( all_data.data_error == C3DHALL_F_FIELDTOOHIGH )
log_printf( &logger, " The norm is greater \r\n" );
else if ( all_data.data_error == C3DHALL_F_ROCLAMP )
log_printf( &logger, " Analog Chain Rough off \r\n" );
else if ( all_data.data_error == C3DHALL_F_DEADZONEALPHA )
log_printf( &logger, " Angle ALPHA in deadzone \r\n" );
else if ( all_data.data_error == C3DHALL_F_DEADZONEBETA )
log_printf( &logger, " Angle BETA in deadzone \r\n" );
else if ( all_data.data_error == C3DHALL_MULTIPLE_ERRORS )
log_printf( &logger, " More than one error \r\n" );
else
log_printf( &logger, " Unknown error \r\n" );
log_printf( &logger, "-------------------------\r\n" );
Delay_1sec( );
}
}
The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.
Other mikroE Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.