TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142157 times)
  2. FAT32 Library (75477 times)
  3. Network Ethernet Library (59615 times)
  4. USB Device Library (49630 times)
  5. Network WiFi Library (45371 times)
  6. FT800 Library (45082 times)
  7. GSM click (31491 times)
  8. mikroSDK (30592 times)
  9. microSD click (27907 times)
  10. PID Library (27645 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

ADC 5 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: ADC

Downloaded: 394 times

Not followed.

License: MIT license  

ADC 5 Click is a Click board™ used to sample an analog voltage on the input and convert it to a digital information. ADC 5 Click is equipped with the ADC121S021, a low power, single channel 12-bit CMOS analog to digital converter (ADC), with a high-speed serial interface.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "ADC 5 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "ADC 5 Click" changes.

Do you want to report abuse regarding "ADC 5 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


ADC 5 Click

ADC 5 Click is a Click board™ used to sample an analog voltage on the input and convert it to a digital information. ADC 5 Click is equipped with the ADC121S021, a low power, single channel 12-bit CMOS analog to digital converter (ADC), with a high-speed serial interface.

adc5_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : SPI type

Software Support

We provide a library for the ADC5 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for ADC5 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void adc5_cfg_setup ( adc5_cfg_t *cfg );

  • Initialization function.

    ADC5_RETVAL adc5_init ( adc5_t ctx, adc5_cfg_t cfg );

  • Click Default Configuration function.

    void adc5_default_cfg ( adc5_t *ctx );

Example key functions :

  • This function calculates the ADC voltage data.

    uint16_t adc5_get_voltage ( adc5_t *ctx );

  • This function reads the ADC voltage data.

    uint16_t adc5_get_data ( adc5_t *ctx );

Examples Description

This example showcases how to initialize and configure the logger and Click modules and how to read and display ADC voltage data from the Click.

The demo application is composed of two sections :

Application Init

This function initializes and configures the logger and Click modules.


void application_init ( )
{
    log_cfg_t log_cfg;
    adc5_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );
    Delay_ms ( 100 );

    //  Click initialization.

    adc5_cfg_setup( &cfg );
    ADC5_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    adc5_init( &adc5, &cfg );
}

Application Task

This function reads and displays ADC voltage data every second.

void application_task ( )
{
    uint16_t adc_value;

    adc_value = adc5_get_voltage( &adc5 );
    log_printf( &logger, " * Voltage: %d mV * \r\n", adc_value );
    Delay_1sec( );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.ADC5

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Timer Relay Click

0

Timer Relay Click is a compact add-on board that allows you to control the load with a timer. This board features the NE5555, a precision timer from Diodes Incorporated. It is a precision timing circuit capable of producing accurate time delays in a monostable mode of operation.

[Learn More]

RFid Click - Example

0

This is a sample program which demonstrates the use of the ST's CR95HF contactless transceiver. The CR95HF is used in the applications such as near field communication (NFC) using 13.56 MHz wireless interface. In this example, when the RFid tag is put over the RFid Click antenna, the tag ID will be displayed on the TFT display.

[Learn More]

6DOF IMU 25 Click

0

6DOF IMU 25 Click is a compact add-on board for biopotential signal detection and motion tracking applications. This board features the ST1VAFE6AX biosensor from STMicroelectronics, which combines a vertical analog front-end (vAFE) for biopotential sensing with a high-performance 6-axis IMU. The IMU features a 3-axis accelerometer and 3-axis gyroscope with adjustable full-scale ranges, along with advanced functionalities like finite state machine (FSM), adaptive self-configuration (ASC), and a machine learning core (MLC) for on-device processing. The board also includes a 4.5KB FIFO buffer for efficient data handling and supports I2C and SPI communication interfaces for easy integration.

[Learn More]