TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141888 times)
  2. FAT32 Library (75039 times)
  3. Network Ethernet Library (59344 times)
  4. USB Device Library (49346 times)
  5. Network WiFi Library (45155 times)
  6. FT800 Library (44701 times)
  7. GSM click (31300 times)
  8. mikroSDK (30262 times)
  9. microSD click (27685 times)
  10. PID Library (27576 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

8 pin I2C click

Rating:

5

Author: MIKROE

Last Updated: 2020-09-18

Package Version: 1.0.0.0

mikroSDK Library: 1.0.0.0

Category: Interface

Downloaded: 2784 times

Not followed.

License: MIT license  

8-pin I2C Click is a compact add-on board that represents a breakout board that simplifies the connection of add-on boards with 8 pin Female Connector to mikroBUSâ„¢ socket.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "8 pin I2C click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "8 pin I2C click" changes.

Do you want to report abuse regarding "8 pin I2C click".

  • mikroSDK Library 2.0.0.0
  • Comments (0)
DOWNLOAD LINK RELATED COMPILER CONTAINS
mikroBasic PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc

mikroSDK Library Blog

8-pin I2C Click

8-pin I2C Click

Native view of the 8-pin I2C Click board.

View full image
8-pin I2C Click

8-pin I2C Click

Front and back view of the 8-pin I2C Click board.

View full image

Library Description

The library contains a basic functions for using 8 pin I2C click.

Key functions:

  • void c8pini2c_i2c_write(uint8_t slave_addr, uint8_t *data_buf,uint16_t len, uint8_t end_mode) - I2C Write function
  • void c8pini2c_i2c_read(uint8_t slave_addr, uint8_t *data_buf,uint16_t len, uint8_t end_mode) - I2C Read function
  • void c8pini2c_i2c_start ( void ) - I2C Start function

Examples description

The application is composed of three sections :

  • System Initialization - Initializes I2C module
  • Application Initialization - Initializes driver init and set up another click for test
  • Application Task - Reads temperature and logs on the USB UART
  • NOTE: Surface temp click board used for demonstrating work 8 pin I2C click-a
void application_task ( )
{
    float temperature;
    char demo_text[ 20 ];

    temperature = surfacetemp_get_temperature( );
    FloatToStr( temperature, demo_text );
    mikrobus_logWrite( "> Temperature : ", _LOG_TEXT );
    mikrobus_logWrite( demo_text, _LOG_LINE );
    Delay_ms( 1500 );
}

Other mikroE Libraries used in the example:

  • I2C Library
  • UART Library
  • Conversions library

Additional notes and informations

Depending on the development board you are using, you may need USB UART clickUSB UART 2 click or RS232 click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.

ALSO FROM THIS AUTHOR

Turbidity Click

0

Turbidity Click is an adapter Click board™, used to interface a compatible turbidity sensor with the host MCU. This board features one 1x3 2.5mm connector suitable for connecting a TSD-10 Turbidity Sensor via an additional 3-wire cable for Turbidity Click specially made for this purpose. It allows users to upgrade their projects with a sensor that senses the cloudiness or haziness of a fluid caused by large numbers of individual particles invisible to the naked eye. This sensor also measures temperature as well as turbidity.

[Learn More]

UT-L 7-SEG R Click

0

UT-L 7-SEG R Click carries two SMD ultra thin LED 7-SEG displays and the MAX6969 constant-current LED driver from Maxim Integrated. The Click is designed to run on either 3.3V or 5V power supply. It communicates with the target microcontroller over SPI interface.

[Learn More]

nvSRAM 2 Click

0

nvSRAM 2 Click is a compact add-on board that contains the most reliable nonvolatile memory. This board features the CY14B101Q, a 1Mbit nvSRAM organized as 128K words of 8 bits each with a nonvolatile element in each memory cell from Cypress Semiconductor. The embedded nonvolatile elements incorporate the QuantumTrap technology and provide highly reliable nonvolatile storage of data. Data transfer, initiated by the user through SPI commands, from SRAM to the nonvolatile elements takes place automatically at Power-Down. On the other hand, during the Power-Up, data is restored to the SRAM from the nonvolatile memory. This Click board™ is suitable for all applications that require fast access and high reliability of stored data, and unlimited endurance.

[Learn More]