TOP Contributors

  1. MIKROE (2779 codes)
  2. Alcides Ramos (376 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139563 times)
  2. FAT32 Library (72041 times)
  3. Network Ethernet Library (57254 times)
  4. USB Device Library (47615 times)
  5. Network WiFi Library (43219 times)
  6. FT800 Library (42559 times)
  7. GSM click (29930 times)
  8. mikroSDK (28292 times)
  9. PID Library (26930 times)
  10. microSD click (26309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Led Driver 8 click

Rating:

5

Author: MIKROE

Last Updated: 2020-09-09

Package Version: 1.0.0.0

mikroSDK Library: 1.0.0.0

Category: LED Drivers

Downloaded: 1971 times

Not followed.

License: MIT license  

LED Driver 8 Click is a compact add-on board optimized for dimming and blinking 32 mA RGBA LEDs. This board features the PCA9957HNMP, 24-channel SPI-compatible constant current LED driver from NXP Semiconductors.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Led Driver 8 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Led Driver 8 click" changes.

Do you want to report abuse regarding "Led Driver 8 click".

  • mikroSDK Library 2.0.0.0
  • Comments (0)
DOWNLOAD LINK RELATED COMPILER CONTAINS
mikroBasic PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc

mikroSDK Library Blog

LED Driver 8 Click

LED Driver 8 Click

Native view of the LED Driver 8 Click board.

View full image
LED Driver 8 Click

LED Driver 8 Click

Front and back view of the LED Driver 8 Click board.

View full image

Library Description

The library contains a basic functions for using LED Driver 8 click.

Key functions:

  • void leddriver8_set_mode_register( uint8_t mode_1, uint8_t mode_2 ) - Function for set mode registers
  • void leddriver8_set_output_gain ( uint8_t num_led, uint8_t value ) - Functions for set output gain
  • void leddriver8_set_brightness ( uint8_t num_led, uint8_t value ) - Functions for set Brightness

Examples description

The application is composed of three sections :

  • System Initialization - Initialization SPI module and all necessary GPIO pins
  • Application Initialization - Initialization driver init and sets module for working
  • Application Task - Changes brightness on all LEDs. Controls are blinking on one LED.
void application_task ( )
{
    uint8_t cnt;
    for( cnt = 0; cnt < 0xFF; cnt++ )
    {
        leddriver8_set_brightness( LEDDRIVER8_BRIGHTNESS_ALL_LED, cnt );
        Delay_ms( 15 );
    }
    
    for( cnt = 0; cnt < 5; cnt++ )
    {
       leddriver8_set_brightness( LEDDRIVER8_LED_0, 200 );
       Delay_ms( 1000 );
       leddriver8_set_brightness( LEDDRIVER8_LED_0, 0 );
       Delay_ms( 1000 );
    }
}

Other mikroE Libraries used in the example:

  • SPI Library

Additional notes and informations

Depending on the development board you are using, you may need USB UART clickUSB UART 2 click or RS232 click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.

ALSO FROM THIS AUTHOR

Clock Gen 2 Click

0

Clock Gen 2 Click is an accurate square wave generator that can generate a clock signal in the range from 260kHz to 66.6MHz.

[Learn More]

Button 3 Click

0

Button 3 Click is a compact add-on board for precise and reliable tactile input detection. This board features three TL3215 series tactile switches from E-Switch, known for their high reliability and consistent performance. Each switch has a 2mm actuator, 160gf actuation force, and a silver contact material for excellent conductivity and durability. The integrated LED provides clear visual feedback, and the board supports the new Click Snap feature, allowing the main sensor area to become movable by breaking the PCB for flexible implementation.

[Learn More]

Color 16 Click

0

Color 16 Click is a compact add-on board providing an accurate color-sensing solution. This board features ams AG’s AS7343, a 14-channel multi-purpose spectral sensor offering spectral response through a compatible I2C interface. It has a built-in aperture that controls the light entering the sensor array to increase accuracy, alongside precise optical filters integrated into standard CMOS silicon via deposited interference filter technology. The spectral response is defined by individual channels covering approximately 380nm to 1000nm with 11 channels centered in the visible spectrum, one near-infrared, and a clear channel.

[Learn More]