TOP Contributors

  1. MIKROE (2779 codes)
  2. Alcides Ramos (376 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139566 times)
  2. FAT32 Library (72041 times)
  3. Network Ethernet Library (57255 times)
  4. USB Device Library (47615 times)
  5. Network WiFi Library (43219 times)
  6. FT800 Library (42566 times)
  7. GSM click (29930 times)
  8. mikroSDK (28292 times)
  9. PID Library (26933 times)
  10. microSD click (26309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

LED Driver 8 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.10

mikroSDK Library: 2.0.0.0

Category: LED Drivers

Downloaded: 139 times

Not followed.

License: MIT license  

LED Driver 8 Click is a compact add-on board optimized for dimming and blinking 32 mA RGBA LEDs. This board features the PCA9957HNMP, 24-channel SPI-compatible constant current LED driver from NXP Semiconductors.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "LED Driver 8 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "LED Driver 8 Click" changes.

Do you want to report abuse regarding "LED Driver 8 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


LED Driver 8 Click

LED Driver 8 Click is a compact add-on board optimized for dimming and blinking 32 mA RGBA LEDs. This board features the PCA9957HNMP, 24-channel SPI-compatible constant current LED driver from NXP Semiconductors.

leddriver8_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Sep 2020.
  • Type : SPI type

Software Support

We provide a library for the LedDriver8 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for LedDriver8 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void leddriver8_cfg_setup ( leddriver8_cfg_t *cfg );

  • Initialization function.

    LEDDRIVER8_RETVAL leddriver8_init ( leddriver8_t ctx, leddriver8_cfg_t cfg );

Example key functions :

  • Function for set Brightness

    void leddriver8_set_brightness ( leddriver8_t *ctx, uint8_t num_led, uint8_t value );

  • Function for set output gain

    void leddriver8_set_output_gain ( leddriver8_t *ctx, uint8_t num_led, uint8_t value );

  • Function for set mode registers

    void leddriver8_set_mode_register( leddriver8_t *ctx, uint8_t mode_1, uint8_t mode_2 );

Examples Description

This example demonstrates the use of LED Driver 8 Click board.

The demo application is composed of two sections :

Application Init

Initializes the driver and configures the Click board.


void application_init ( void )
{
    log_cfg_t log_cfg;
    leddriver8_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    leddriver8_cfg_setup( &cfg );
    LEDDRIVER8_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    leddriver8_init( &leddriver8, &cfg );

    leddriver8_reset( &leddriver8 );
    Delay_ms ( 500 );

    leddriver8_output_enable_pin( &leddriver8, LEDDRIVER8_ENABLE_LED_OUTPUTS );
    leddriver8_set_output_gain( &leddriver8, LEDDRIVER8_OUTPUT_GAIN_ALL_LED, LEDDRIVER8_FULL_OUTPUT_CURRENT_GAIN );
    leddriver8_set_mode_register( &leddriver8, LEDDRIVER8_MODE1_NORMAL_MODE, LEDDRIVER8_MODE2_DMBLNK_DIMMING |
                                  LEDDRIVER8_MODE2_CLRERR_ALL | LEDDRIVER8_MODE2_EXP_DISABLE );
    log_info( &logger, "---- Application Task ----" );
    Delay_ms ( 500 );
}

Application Task

Increases the LEDs brightness then toggles all LEDs with a one-second delay. Each step will be logged on the USB UART where you can track the program flow.


void application_task ( void )
{
    uint16_t cnt;

    log_printf( &logger, "Increasing LEDs brightness...\r\n" );
    log_printf( &logger, "----------------------------\r\n" );
    for ( cnt = LEDDRIVER8_MIN_BRIGHTNESS; cnt <= LEDDRIVER8_MAX_BRIGHTNESS; cnt++ )
    {
        leddriver8_set_brightness( &leddriver8, LEDDRIVER8_BRIGHTNESS_ALL_LED, cnt );
        Delay_ms ( 20 );
    }

    log_printf( &logger, "Toggling all LEDs...\r\n" );
    log_printf( &logger, "----------------------------\r\n" );
    for ( cnt = 0; cnt < 5; cnt++ )
    {
       leddriver8_set_brightness( &leddriver8, LEDDRIVER8_BRIGHTNESS_ALL_LED, LEDDRIVER8_MAX_BRIGHTNESS );
       Delay_ms ( 1000 );
       leddriver8_set_brightness( &leddriver8, LEDDRIVER8_BRIGHTNESS_ALL_LED, LEDDRIVER8_MIN_BRIGHTNESS );
       Delay_ms ( 1000 );
    }
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.LedDriver8

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

XBEE 2 Click

0

Xbee 2 Click is a compact add-on board providing wireless end-point connectivity to other devices. This board features the XB3-24Z8UM, a Digi XBee® 3 transceiver module offering a fully interoperable ecosystem covering all vertical markets from Digi International. Building on industry-leading technology, the pre-certified Digi XBee® 3 module delivers the flexibility to switch between multiple frequencies and wireless protocols as needed (Zigbee, 802.15.4, DigiMesh® and BLE). It can be easily configured and controlled from a simple, central platform and comes with built-in Digi TrustFence® security, identity, and data privacy features which use more than 175 controls to protect against new and evolving cyber threats.

[Learn More]

Pressure 4 Click

0

Pressure 4 Click is an absolute barometric pressure measurement Click board™, which features a low power consumption, high precision barometric pressure sensor. Capable of using both SPI and I2C communication protocols, Pressure 4 Click allows being interfaced with a broad range of various microcontroller units (MCUs). The sensor used on this Click board™ features onboard processing capabilities, such as the IIR filtering, used to filter out abrupt changes of pressure. Low power consumption allows Pressure 4 Click to be used in many portable, battery-powered applications.

[Learn More]

Thermo 14 click

5

Thermo 14 Click uses the STTS22H digital temperature sensor and thermal watchdog, which can measure temperature measurements between -40°C and +125°C so that the temperature measurement data can be processed by the host MCU. Thermo 14 click provides an accuracy of ±0.5°C in the range from -10°C to 60°C.

[Learn More]