TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142134 times)
  2. FAT32 Library (75444 times)
  3. Network Ethernet Library (59571 times)
  4. USB Device Library (49563 times)
  5. Network WiFi Library (45364 times)
  6. FT800 Library (45013 times)
  7. GSM click (31487 times)
  8. mikroSDK (30589 times)
  9. microSD click (27905 times)
  10. PID Library (27640 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Qi RX click

Rating:

5

Author: MIKROE

Last Updated: 2020-12-30

Package Version: 1.0.0.0

mikroSDK Library: 1.0.0.0

Category: Wireless Charging

Downloaded: 2871 times

Not followed.

License: MIT license  

Qi RX Click is a compact add-on board made for the purpose of wireless power transfer. This board features the PIC16F15313, a general-purpose 8-bit MCU that makes a flexible, low-cost alternative to the wireless charging solutions based on ASICs from Microchip.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Qi RX click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Qi RX click" changes.

Do you want to report abuse regarding "Qi RX click".

  • mikroSDK Library 2.0.0.0
  • Comments (0)
DOWNLOAD LINK RELATED COMPILER CONTAINS
mikroBasic PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc

mikroSDK Library Blog

Qi RX click

Qi RX click

Native view of the Qi RX click board.

View full image
Qi RX click

Qi RX click

Front and back view of the Qi RX click board.

View full image

Library Description

The library covers all the necessary functions that enables the usage of the Qi RX Click board™. It offers reading from output register and calculations that result in relatively accurate measurement of connected batteries voltage.

Key functions:

  • uint16_t qirx_read_data ( ); - Function is used to read raw data from MCP3221.
  • uint16_t qirx_read_voltage ( uint16_t v_ref ); - Function is used to calculate voltage of the connected battery.

Examples description

The application is composed of three sections :

  • System Initialization - Initializes I2C module and LOG structure.
  • Application Initialization - Initalizes I2C driver and makes an initial log.
  • Application Task - This example shows the capabilities of the Qi RX Click by measuring voltage of the connected battery. In order to get correct calculations user should change "v_ref" value to his own power supply voltage.
void application_task ( )
{
    voltage = qirx_read_voltage( v_ref );
    WordToStr( voltage, log_txt );
    Ltrim( log_txt );
    mikrobus_logWrite( "Battery voltage: ", _LOG_TEXT );
    mikrobus_logWrite( log_txt, _LOG_TEXT );
    mikrobus_logWrite( "mV", _LOG_LINE );

    mikrobus_logWrite( "-----------------------", _LOG_LINE );
    Delay_ms( 2000 );
}

Other mikroE Libraries used in the example:

  • I2C
  • UART
  • Conversions

Additional notes and informations

Depending on the development board you are using, you may need USB UART clickUSB UART 2 click or RS232 click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.

ALSO FROM THIS AUTHOR

CO click

5

This example demonstrates usage of the CO click board in mikroBUS form factor. This CO sensor is suitable for gas detecting equipment for Carbon Monoxide (CO). LCD shows PPM value of Carbon Monoxide (CO) concentration.

[Learn More]

Temp-Hum 3 click

5

Temp-Hum 3 click is a smart environmental temperature and humidity sensor Click board, packed with features, that allows easy and simple integration into any design that requires accurate and reliable humidity and temperature measurements.

[Learn More]

LED Driver 13 Click

0

LED Driver 13 Click is a compact add-on board that simplifies the control of multiple LEDs. This board features the A80604-1, a 4-channel LED driver designed at a switching frequency of 400kHz that provides 150mA per channel from Allegro Microsystems. It is powered by an external power supply in the range of 6V to 18V, providing an output voltage of approximately 26V, which is used to power LEDs connected to LED channels. On the logical side, this board uses both 3V3 and 5V with mikroBUS™ power rails and communicates with the MCU via GPIO pins. In addition, the user is given the option of analog or digital LED dimming selection, using a PWM pin from the mikroBUS™ socket or via an onboard potentiometer/external PWM signal.

[Learn More]