TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141936 times)
  2. FAT32 Library (75086 times)
  3. Network Ethernet Library (59382 times)
  4. USB Device Library (49373 times)
  5. Network WiFi Library (45195 times)
  6. FT800 Library (44755 times)
  7. GSM click (31329 times)
  8. mikroSDK (30291 times)
  9. microSD click (27699 times)
  10. PID Library (27584 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Heart rate 4 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: Biometrics

Downloaded: 564 times

Not followed.

License: MIT license  

Heart rate 4 Click carries the MAX30101 high-sensitivity pulse oximeter and heart-rate sensor from Maxim Integrated. The Click is designed to run on either 3.3V or 5V power supply. It communicates with the target MCU over I2C interface, with additional functionality provided by INT pin on the mikroBUS™ line.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Heart rate 4 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Heart rate 4 Click" changes.

Do you want to report abuse regarding "Heart rate 4 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Heart rate 4 Click

Heart rate 4 Click carries the MAX30101 high-sensitivity pulse oximeter and heart-rate sensor from Maxim Integrated. The Click is designed to run on either 3.3V or 5V power supply. It communicates with the target MCU over I2C interface, with additional functionality provided by INT pin on the mikroBUS™ line.

heartrate4_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Feb 2020.
  • Type : I2C type

Software Support

We provide a library for the HeartRate4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for HeartRate4 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void heartrate4_cfg_setup ( heartrate4_cfg_t *cfg );

  • Initialization function.

    HEARTRATE4_RETVAL heartrate4_init ( heartrate4_t ctx, heartrate4_cfg_t cfg );

  • Click Default Configuration function.

    void heartrate4_default_cfg ( heartrate4_t *ctx );

Example key functions :

  • Function is used to read desired interrupt specified by flag.

    uint8_t heartrate4_get_intrrupt ( heartrate4_t *ctx, uint8_t flag );

  • Function is used to read the oldest RED value.

    uint32_t heartrate4_get_red_val ( heartrate4_t *ctx );

  • Function is used to determine which LED is active in each time slot.

    void heartrate4_enable_slot ( heartrate4_t *ctx, uint8_t slot_num, uint8_t dev );

Examples Description

This example demonstrates the use of Heart rate 4 Click board.

The demo application is composed of two sections :

Application Init

Initalizes I2C driver, applies default settings, and makes an initial log.



void application_init ( void )
{
    log_cfg_t log_cfg;
    heartrate4_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    heartrate4_cfg_setup( &cfg );
    HEARTRATE4_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    heartrate4_init( &heartrate4, &cfg );

    Delay_ms ( 100 );
    heartrate4_default_cfg( &heartrate4 );
    Delay_ms ( 100 );
}

Application Task

Reads data from Red diode and displays the results on USB UART if the measured data is above defined threshold, otherwise, it displays desired message on the terminal.



void application_task ( void )
{
    if ( heartrate4_get_intrrupt( &heartrate4, 1 ) & 0x40 )
    {
        red_samp = heartrate4_get_red_val( &heartrate4 );
        counter++;

        // If sample pulse amplitude is not under threshold value 0x8000
        if ( red_samp > 0x8000 )
        {
            log_printf( &logger, "%lu\r\n", red_samp );
            Delay_ms ( 1 );
            counter = 200;
        }
        else if ( counter > 200 )
        {
            log_printf( &logger, "Place Finger On Sensor\r\n" );
            Delay_ms ( 100 );
            counter = 0;
        }
    }
}

Note

    MCU              : STM32F107VCT6
    Dev. Board       : Fusion for ARM v8

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.HeartRate4

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

MRAM 4 Click

0

MRAM 4 Click is a compact add-on board representing a magneto-resistive random-access memory solution. This board features the EM064LX, an industrial STT-MRAM persistent memory from Everspin Technologies. It is a 64Mb MRAM IC RAM and can achieve up to 200MHz as a single and double data rate (STR/DTR). The MRAM technology is analog to Flash technology with SRAM-compatible read/write timings (Persistent SRAM, P-SRAM), where data is always non-volatile. It also has a hardware write-protection feature and performs read and write operations with data retention for ten years and unlimited read, write, and erase operations for the supported life of the chip.

[Learn More]

Matrix G Click

0

Matrix G Click is a mikroBUS add-on board with two green 5x7 matrices driven by two MAX7219 8-bit LED Display Drivers. The active area of each matrix is 7.62mm high and 5.08 mm wide. 7x5 is a standard resolution for displaying ASCII characters, so the Click is essentially a dual-character display capable of showing letters in more readable typefaces compared to a 14-segment display. The Click communicates with the target MCU through the mikroBUS SPI interface with two separate Chip Select lines for each matrix (CSL for the left, CSR for the right). This board is designed to use a 5V power supply.

[Learn More]

UART 1-Wire Click

0

UART 1-Wire Click is used to convert standard UART or RS232 signals into 1-Wire® signals. Apart from other features such as the slew rate control for larger 1-Wire® busses, selectable data rate, an accurate self-calibrating time base, ESD protection and more, the main feature of the UART 1-Wire® Click, is that it manages all the sensitive signal timings involved in 1-Wire® communication, allowing rapid development of UART to 1-Wire® applications.

[Learn More]