We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.18
mikroSDK Library: 2.0.0.0
Category: Pushbutton/Switches
Downloaded: 170 times
Not followed.
License: MIT license
Tamper Click is equipped with SDS001, a low profile side-actuated detect switch, made by C&K company. This is a high-quality, low-current detection switch, which is designed in a form of a push button. The switch itself is very small - only 2mm of switch overtravel length, which coupled with its low actuation force, makes it ideal for using it as a contact detector in various applications - consumer electronics devices, medical devices, smart card detection and similar applications.
Do you want to subscribe in order to receive notifications regarding "Tamper Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "Tamper Click" changes.
Do you want to report abuse regarding "Tamper Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
3933_tamper_click.zip [346.60KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
Tamper Click is equipped with SDS001, a low profile side-actuated detect switch, made by C&K company. This is a high-quality, low-current detection switch, which is designed in a form of a push button. The switch itself is very small - only 2mm of switch overtravel length, which coupled with its low actuation force, makes it ideal for using it as a contact detector in various applications - consumer electronics devices, medical devices, smart card detection and similar applications.
We provide a library for the Tamper Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.
This library contains API for Tamper Click driver.
Config Object Initialization function.
void tamper_cfg_setup ( tamper_cfg_t *cfg );
Initialization function.
TAMPER_RETVAL tamper_init ( tamper_t ctx, tamper_cfg_t cfg );
uint8_t tamper_state ( tamper_t *ctx );
Tamper Click is equipped with side-actuated detect switch. The switch itself acts as a push button and has 2 Normally Open terminals, which get shorted when the force is applied. The applied pressure closes the circuit, connecting the VCC routed to the first pin of the switch with the INT pin on the mikroBUS. The microcontroller is then able to detect a high logical level on the INT pin and the desired task can then be executed.
The demo application is composed of two sections :
Initialization driver enables GPIO and also starts write log.
void application_init ( void )
{
log_cfg_t log_cfg;
tamper_cfg_t cfg;
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info(&logger, "---- Application Init ----");
// Click initialization.
tamper_cfg_setup( &cfg );
TAMPER_MAP_MIKROBUS( cfg, MIKROBUS_1 );
tamper_init( &tamper, &cfg );
}
This is an example which demonstrates the use of Tamper Click board. It detects whether the state of switch on Tamper Click is changes to open or to closed. Results are being sent to the Usart Terminal where you can keep track of their changes.
void application_task ( void )
{
switch_state = tamper_state( &tamper );
if ( switch_state == 1 && switch_state_old == 0 )
{
log_printf( &logger, " Closed \r\n" );
log_printf( &logger, "- - - - - - - - -\r\n" );
switch_state_old = 1;
}
if ( switch_state == 0 && switch_state_old == 1 )
{
log_printf( &logger, " Open \r\n" );
log_printf( &logger, "- - - - - - - - -\r\n" );
switch_state_old = 0;
}
}
The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.
Other mikroE Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.