TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141854 times)
  2. FAT32 Library (75021 times)
  3. Network Ethernet Library (59335 times)
  4. USB Device Library (49333 times)
  5. Network WiFi Library (45146 times)
  6. FT800 Library (44690 times)
  7. GSM click (31296 times)
  8. mikroSDK (30248 times)
  9. microSD click (27678 times)
  10. PID Library (27570 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Heart Rate 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.15

mikroSDK Library: 2.0.0.0

Category: Biometrics

Downloaded: 443 times

Not followed.

License: MIT license  

Heart Rate 2 Click is an add-on board based on MAXM86161 from Maxim Integrated a complete, integrated, optical data acquisition system, ideal for optical pulse oximetry and heart-rate detection applications. The optical readout has a low-noise signal conditioning analog front-end (AFE), including 19-bit ADC, an industry-lead ambient light cancellation (ALC) circuit, and a picket fence detect and replace algorithm.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Heart Rate 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Heart Rate 2 Click" changes.

Do you want to report abuse regarding "Heart Rate 2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Heart Rate 2 Click

Heart Rate 2 Click is an add-on board based on MAXM86161 from Maxim Integrated a complete, integrated, optical data acquisition system, ideal for optical pulse oximetry and heart-rate detection applications. The optical readout has a low-noise signal conditioning analog front-end (AFE), including 19-bit ADC, an industry-lead ambient light cancellation (ALC) circuit, and a picket fence detect and replace algorithm.

heartrate2_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Feb 2020.
  • Type : I2C type

Software Support

We provide a library for the HeartRate2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for HeartRate2 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void heartrate2_cfg_setup ( heartrate2_cfg_t *cfg );

  • Initialization function.

    HEARTRATE2_RETVAL heartrate2_init ( heartrate2_t ctx, heartrate2_cfg_t cfg );

  • Click Default Configuration function.

    void heartrate2_default_cfg ( heartrate2_t *ctx );

Example key functions :

  • This function settings en pin status.

    void heartrate2_set_en ( heartrate2_t *ctx, uint8_t state );

  • This function restarts device.

    void heartrate2_soft_reset ( heartrate2_t *ctx );

  • This function reads data buffer from the desired register.

    void heartrate2_read_fifo ( heartrate2_t ctx, heartrate2_fifo_data_t fifo );

Examples Description

This example demonstrates the use of Heart rate 2 Click board.

The demo application is composed of two sections :

Application Init

Initilizes the driver, resets the device, checks the device ID and applies default settings.


void application_init ( void )
{
    log_cfg_t log_cfg;
    heartrate2_cfg_t cfg;
    uint8_t rd_stat;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    heartrate2_cfg_setup( &cfg );
    HEARTRATE2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    heartrate2_init( &heartrate2, &cfg );

    log_printf( &logger, "Configuring the module...\r\n" );
    Delay_ms ( 1000 );

    heartrate2_set_en( &heartrate2, HEARTRATE2_PIN_HIGH );
    Delay_ms ( 100 );
    heartrate2_soft_reset ( &heartrate2 );

    rd_stat = heartrate2_generic_read( &heartrate2, HEARTRATE2_REG_PART_ID );

    if ( rd_stat != HEARTRATE2_DEV_ID )
    {
        log_error( &logger, "---- WRONG ID ----" );
        log_printf( &logger, "Please restart your system.\r\n" );
        for ( ; ; );
    }

    heartrate2_default_cfg( &heartrate2, HEARTRATE2_CONFIG_GREEN );
    log_printf( &logger, "The module has been configured!\r\n" );
    Delay_ms ( 1000 );
}

Application Task

Reads the data from Green diode and displays the results on USB UART if the measured data is above defined threshold, otherwise, it displays a desired message on the terminal.


void application_task ( void )
{
    heartrate2_fifo_data_t fifo_object;

    heartrate2_read_fifo( &heartrate2, &fifo_object );

    if ( fifo_object.tag == HEARTRATE2_FIFO_TAG_PPG1_LEDC1 )
    {
        counter++;
        if ( fifo_object.data_val > 1000 )
        {
            log_printf( &logger, "%lu;\r\n", fifo_object.data_val );
            counter = 1000;
        }
        else if ( counter > 1000 )
        {
            log_printf( &logger, "Please place your index finger on the sensor.\r\n" );
            counter = 0;
        }
    }
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.HeartRate2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

I2C Isolator 4 Click

0

I2C Isolator 4 Click is a compact add-on board that offers completely isolated bidirectional communication. This board features the MAX14937, a two-channel, 5kVRMS I2C digital isolator from Analog Devices. The MAX14937 provides two bidirectional, open-drain channels for applications that require data to be transmitted in both directions on the same line. It supports data rates from DC up to 1.7MHz and can be used in isolated I2C busses with or without clock stretching.

[Learn More]

IoT ExpressLink Click

0

IoT ExpressLink Click is a compact add-on board that allows users to easily connected to IoT ExpressLink services and securely interact with cloud applications and other devices. This board features the ESP32-C3-MINI-1-N4-A, a small 2.4GHz WiFi (802.11 b/g/n) and Bluetooth® 5 module from Espressif Systems that use ESP32C3 series of SoC RISCV single-core microprocessor (ESP32-C3FN4) with 4MB flash in a single chip package. The module uses UART communication alongside several other features like the JTAG interface, module wake-up, various operational event detection, additional UART for debugging, and others.

[Learn More]

LTE Cat.1 6 Click

0

LTE Cat.1 6 Click is a compact add-on board with global coverage for wireless communication over LTE, UMTS, and GSM networks. This board features the SIM7600SA, a LTE Cat 1 module from SIMCom, supporting LTE-TDD/LTE-FDD/HSPA+/GSM/GPRS/EDGE communication modes. Key features include multi-band LTE support, auxiliary diversity, and optional multi-constellation GNSS. It also integrates USB Type C for power and data transfer, a micro SIM card holder, three LED indicators for network status, power, custom notifications, AT command communication, and firmware upgrades.

[Learn More]