TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141686 times)
  2. FAT32 Library (74756 times)
  3. Network Ethernet Library (59207 times)
  4. USB Device Library (49224 times)
  5. Network WiFi Library (44996 times)
  6. FT800 Library (44523 times)
  7. GSM click (31196 times)
  8. mikroSDK (30095 times)
  9. microSD click (27580 times)
  10. PID Library (27537 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

BLE 7 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.19

mikroSDK Library: 2.0.0.0

Category: BT/BLE

Downloaded: 522 times

Not followed.

License: MIT license  

The BLE 7 Click is a Click board™ witch provide BT/BLE connectivity for any embedded application. BLE 7 Click based on the BGX13S22GA-V31, a SiP module from Silicon Labs with a buit-in antenna. Click board™ an ultra-small, high-performing, Bluetooth low energy module for easy integration of Bluetooth low energy connectivity (BLE) into various electronic devices. Given its features, this Click can be used for health, sports, and wellness devices as well as Industrial, home, and building automation; and smart phone, tablet, and PC accessories.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "BLE 7 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "BLE 7 Click" changes.

Do you want to report abuse regarding "BLE 7 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog

\mainpage Main Page


BLE 7 Click

The BLE 7 Click is a Click board™ witch provide BT/BLE connectivity for any embedded application. BLE 7 Click based on the BGX13S22GA-V31, a SiP module from Silicon Labs with a buit-in antenna. Click board™ an ultra-small, high-performing, Bluetooth low energy module for easy integration of Bluetooth low energy connectivity (BLE) into various electronic devices. Given its features, this Click can be used for health, sports, and wellness devices as well as Industrial, home, and building automation; and smart phone, tablet, and PC accessories.

ble7_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : jul 2020.
  • Type : UART GSM/IOT type

Software Support

We provide a library for the Ble7 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Ble7 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void ble7_cfg_setup ( ble7_cfg_t *cfg );

  • Initialization function.

    BLE7_RETVAL ble7_init ( ble7_t ctx, ble7_cfg_t cfg );

Example key functions :

  • This function allows user to reset BGX module.

    void ble7_reset ( ble7_t *ctx );

  • This function allows user to transmit data to the BGX module.

    void ble7_send_command ( ble7_t ctx, char command );

Examples Description

This example reads and processes data from BLE 7 clicks.

The demo application is composed of two sections :

Application Init

Initializes the driver and configures the Click board.


void application_init ( void )
{
    log_cfg_t log_cfg;
    ble7_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    ble7_cfg_setup( &cfg );
    BLE7_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    ble7_init( &ble7, &cfg );
    Delay_1sec( );

    log_printf( &logger, "Configuring the module...\r\n" );
    Delay_1sec( );
    config_mode = 1;

    do 
    {
        ble7_reset( &ble7 );
        Delay_1sec( );
    }
    while( ble7_process(  ) != 1 );

    do 
    {
        ble7_send_command( &ble7, BLE7_CLEAR_BONDING );
        Delay_1sec( );
    }
    while( ble7_process(  ) != 1 );

    do 
    {
        ble7_send_command( &ble7, BLE7_ENABLE_ECHO );
        Delay_1sec( );
    }
    while( ble7_process(  ) != 1 );

    do 
    {
        ble7_send_command( &ble7, BLE7_ENABLE_PAIRING );
        Delay_1sec( );
    }
    while( ble7_process(  ) != 1 );

    do 
    {
        ble7_send_command( &ble7, BLE7_ENABLE_BONDING );
        Delay_1sec( );
    }
    while( ble7_process(  ) != 1 );

    do 
    {
        ble7_send_command( &ble7, BLE7_SET_DEVICE_NAME );
        Delay_1sec( );
    }
    while( ble7_process(  ) != 1 );

    do 
    {
        ble7_send_command( &ble7, BLE7_SET_ADVERTISING_ON );
        Delay_1sec( );
    }
    while( ble7_process(  ) != 1 );

    do 
    {
        ble7_send_command( &ble7, BLE7_SET_ADVERTISING_HIGH_DURATION );
        Delay_1sec( );
    }
    while( ble7_process(  ) != 1 );

    do 
    {
        ble7_send_command( &ble7, BLE7_SAVE_CONFIGURATION );
        Delay_1sec( );
    }
    while( ble7_process(  ) != 1 );

    do 
    {
        ble7_send_command( &ble7, BLE7_SWITCH_TO_STREAM_MODE );
        Delay_1sec( );
    }
    while( ble7_process(  ) != 1 );

    config_mode = 0;
    log_printf( &logger, "The module has been configured.\r\n" );
    Delay_1sec( );
}

Application Task

Checks for the received data, reads it and replies with a certain message.


void application_task ( void )
{
    ble7_process(  );
}  

Note

We have used the BLE Scanner smartphone application for the test. A smartphone and the Click board must be paired in order to exchange messages with each other. For more information about the BGX module commands, please refer to the following link: https://docs.silabs.com/gecko-os/1/bgx/latest/commands

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Ble7

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

mikromedia for PSoC® 5LP - Examples

0

Set of examples for mikromedia for PSoC® 5LP. Provided examples demonstrate working with mikromedia's various features and modules: Accelerometer, Calculator, MP3, RTCC, Serial FRAM, TFT, Slider. Examples are written in PSoC® Creator 3.0.

[Learn More]

Magnetic Rotary 2 Click

0

Magnetic Rotary 2 Click is a compact add-on board used for accurate magnet-position sensing. This board features the AEAT-9922, an angular magnetic rotary sensor providing accurate angular measurement over a full 360 degrees of rotation from Broadcom Limited. The AEAT-9922 uses integrated Hall sensor elements with complex analog and digital signal processing within a single device. The absolute angle measurement provides an instant indication of the magnet's angular position with a selectable and one-time programmable resolution from 10 to 18 bits.

[Learn More]

MPU 9DOF click

1

Simple example which demonstrates usage of the MPU 9 DOF Click board with MPU-9150 module which integrates the accel, gyro and magnetic sensors. STM32F407VG on mikromedia for STM32 M4 is used as a host for this example project.

[Learn More]