TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (403 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (132 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140957 times)
  2. FAT32 Library (73508 times)
  3. Network Ethernet Library (58321 times)
  4. USB Device Library (48508 times)
  5. Network WiFi Library (44132 times)
  6. FT800 Library (43686 times)
  7. GSM click (30546 times)
  8. mikroSDK (29286 times)
  9. PID Library (27220 times)
  10. microSD click (26931 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

IR Grid Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.15

mikroSDK Library: 2.0.0.0

Category: Optical

Downloaded: 262 times

Not followed.

License: MIT license  

IR Grid Click is a thermal imaging sensor. It has an array of 64 very sensitive factory calibrated IR elements (pixels), arranged in 4 rows of 16 pixels, each measuring an object temperature up to 300˚C within its local Field of View (FOV). The MLX90621ESF-BAD IR sensor used on this Click board™ has only four pins, and it is mounted inside of the industry standard TO39 package. It is equipped with 2Kbit of EEPROM for storing the compensation and calibration parameters.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "IR Grid Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "IR Grid Click" changes.

Do you want to report abuse regarding "IR Grid Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


IR Grid Click

IR Grid Click is a thermal imaging sensor. It has an array of 64 very sensitive factory calibrated IR elements (pixels), arranged in 4 rows of 16 pixels, each measuring an object temperature up to 300˚C within its local Field of View (FOV). The MLX90621ESF-BAD IR sensor used on this Click board™ has only four pins, and it is mounted inside of the industry standard TO39 package. It is equipped with 2Kbit of EEPROM for storing the compensation and calibration parameters.

irgrid_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : maj 2020.
  • Type : I2C type

Software Support

We provide a library for the IrGrid Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for IrGrid Click driver.

Standard key functions :

  • Config Object Initialization function.

    void irgrid_cfg_setup ( irgrid_cfg_t *cfg );

  • Initialization function.

    IRGRID_RETVAL irgrid_init ( irgrid_t ctx, irgrid_cfg_t cfg );

Example key functions :

  • Measures temperature and places it inside internal buffers. This function is

  • needed to be called prior to irgrid_get_ir_raw or irgrid_get_temperature.

    uint8_t irgrid_measure ( irgrid_t ctx, irgrid_data_t data_str );

  • Populates provided buffer with calculated temperatures. Buffer must have at least 64 members.

    void irgrid_get_temperature ( irgrid_data_t data_str, float buffer );

  • Read function using EEPROM slave adress.

    void irgrid_read_eeprom ( irgrid_t ctx, uint8_t reg, uint8_t data_buf, uint8_t len );

Examples Description

IR Grid Click is a thermal imaging sensor. It has an array of 64 very sensitive factory calibrated IR elements (pixels), arranged in 4 rows of 16 pixels, each measuring an object temperature up to 300˚C.

The demo application is composed of two sections :

Application Init

Initializes driver init and IR Grid module


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    irgrid_cfg_t irgrid_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    irgrid_cfg_setup( &irgrid_cfg );
    IRGRID_MAP_MIKROBUS( irgrid_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == irgrid_init( &irgrid, &irgrid_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    irgrid_device_init( &irgrid, &irgrid_data, 16 );

    log_info( &logger, " Application Task " );
}

Application Task

Reads the temperature of all pixels and creates a pixel temperature matrix that logs on usbuart every half of second


void application_task ( void )
{    
    if ( 1 != irgrid_measure( &irgrid, &irgrid_data ) )
    {
        irgrid_get_temperature( &irgrid_data, &ir_tmp[ 0 ] );
    }

    for ( rc = 0; rc < 4; rc++ )
    {
        for ( cc = 0; cc < 16; cc++ )
        {
            i = ( cc * 4 ) + rc;
            log_printf( &logger, "%.3f    ", ir_tmp[ i ] );
        }
        log_printf( &logger, "\r\n" );
        Delay_ms ( 100 );
    }

    log_printf( &logger, "\r\n" );
    log_printf( &logger, "\r\n" );
    log_printf( &logger, "\r\n" );
    Delay_ms ( 500 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.IrGrid

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

RTC 17 Click

0

RTC 17 Click is a compact add-on board that accurately keeps the time of a day. This board features the RV5C387A, a CMOS real-time clock with a built-in interrupt generation function from Nisshinbo Micro Devices Inc, to perform serial transmission of time and calendar data to the MCU. The BU9873 provides information like year, month, day, weekday, hours, minutes, and seconds based on a 32.768kHz quartz crystal through an I2C serial interface to transmit time and calendar data to the MCU. It also has an alarm function that outputs an interrupt signal to the MCU when the day of the week, hour, or minute matches with the preset time.

[Learn More]

RS485 5V Click

0

RS485 Click 5V is an RS422/485 transceiver Click board™, which can be used as an interface between the TTL level UART and the RS422/485 communication bus. It features a half-duplex communication capability, bus Idle, open, and short-circuit detection, thermal shutdown, and more. It is well suited for transmitting data packets over long distances and noisy areas, using the twisted wire bus, which offers good electromagnetic interferences (EMI) immunity.

[Learn More]

Expand 9 Click

0

Expand 9 Click is a compact add-on board that contains a multi-port I/O expander. This board features the SX1509QB, the world’s lowest voltage level shifting GPIO expander from Semtech Corporation. The SX1509QB comes in a 16-channel configuration and allows easy serial expansion of I/O through a standard I2C serial interface. It also has a built-in level shifting feature making it highly flexible in power supply systems where communication between incompatible I/O voltages is required, an integrated LED driver for enhanced lighting, and a keypad scanning engine to implement keypad applications up to 8x8 matrix.

[Learn More]