TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142104 times)
  2. FAT32 Library (75372 times)
  3. Network Ethernet Library (59543 times)
  4. USB Device Library (49550 times)
  5. Network WiFi Library (45357 times)
  6. FT800 Library (44990 times)
  7. GSM click (31486 times)
  8. mikroSDK (30556 times)
  9. microSD click (27872 times)
  10. PID Library (27631 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

MPU 9DOF Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: Motion

Downloaded: 511 times

Not followed.

License: MIT license  

MPU 9DOF Click carries the MPU–9250 System in Package, which is the world’s first 9-axis Motion Tracking device. MPU–9250 comprises two chips. One is the MPU–6050 that contains a 3-axis accelerometer, a 3-axis gyroscope, and a DMP (digital motion processor); the other is AK8975, a 3-axis digital compass.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "MPU 9DOF Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "MPU 9DOF Click" changes.

Do you want to report abuse regarding "MPU 9DOF Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


MPU 9DOF Click

MPU 9DOF Click carries the MPU–9250 System in Package, which is the world’s first 9-axis Motion Tracking device. MPU–9250 comprises two chips. One is the MPU–6050 that contains a 3-axis accelerometer, a 3-axis gyroscope, and a DMP (digital motion processor); the other is AK8975, a 3-axis digital compass.

mpu9dof_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : maj 2020.
  • Type : I2C type

Software Support

We provide a library for the Mpu9Dof Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Mpu9Dof Click driver.

Standard key functions :

  • Config Object Initialization function.

    void mpu9dof_cfg_setup ( mpu9dof_cfg_t *cfg );

  • Initialization function.

    MPU9DOF_RETVAL mpu9dof_init ( mpu9dof_t ctx, mpu9dof_cfg_t cfg );

  • Click Default Configuration function.

    void mpu9dof_default_cfg ( mpu9dof_t *ctx );

Example key functions :

  • Function read Gyro X-axis, Y-axis and Z-axis axis.

    void mpu9dof_read_accel ( mpu9dof_t ctx, int16_t accel_x, int16_t accel_y, int16_t accel_z );

  • Function read Gyro X-axis, Y-axis and Z-axis axis.

    void mpu9dof_read_gyro ( mpu9dof_t ctx, int16_t gyro_x, int16_t gyro_y, int16_t gyro_z );

  • Function read Magnetometar X-axis, Y-axis and Z-axis axis.

    void mpu9dof_read_mag ( mpu9dof_t ctx, int16_t mag_x, int16_t mag_y, int16_t mag_z );

Examples Description

MPU 9DOF Click carries the world’s first 9-axis Motion Tracking device. It comprises two chips: one that contains a 3-axis accelerometer, a 3-axis gyroscope, and a DMP (digital motion processor); the other is a 3-axis digital compass.

The demo application is composed of two sections :

Application Init

Initialization driver enable's - I2C, initialize MPU-9150 XL G & MPU-9150 MAG and start write log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    mpu9dof_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    mpu9dof_cfg_setup( &cfg );
    MPU9DOF_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    mpu9dof_init( &mpu9dof, &cfg );

    Delay_10ms( );
    mpu9dof_default_cfg ( &mpu9dof );
}

Application Task

This is a example which demonstrates the use of MPU 9DOF Click board. Measured accel, gyro and magnetometar coordinates values ( X, Y, Z ) and temperature value in degrees celsius [ �C ] are being sent to the uart where you can track their changes. All data logs on usb uart for aproximetly every 1 sec.


void application_task ( void )
{
    mpu9dof_read_accel( &mpu9dof, &accel_x, &accel_y, &accel_z );
    Delay_10ms( );
    mpu9dof_read_gyro( &mpu9dof, &gyro_x,  &gyro_y, &gyro_z );
    Delay_10ms( );
    mpu9dof_read_mag( &mpu9dof, &mag_x,  &mag_y, &mag_z );
    Delay_10ms( );
    temperature = mpu9dof_read_temperature( &mpu9dof );
    Delay_10ms( );

    log_printf( &logger, " Accel X : %d   |   Gyro X : %d   |   Mag X : %d \r\n", accel_x, gyro_x, mag_x );
    log_printf( &logger, " Accel Y : %d   |   Gyro Y : %d   |   Mag Y : %d \r\n", accel_y, gyro_y, mag_y );
    log_printf( &logger, " Accel Z : %d   |   Gyro Z : %d   |   Mag Z : %d \r\n", accel_z, gyro_z, mag_z );
    Delay_10ms( );
    log_printf( &logger, "- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -\r\n" );
    Delay_10ms( );
    log_printf( &logger, "Temperature: %.2f C\r\n", temperature );
    Delay_100ms( );
    log_printf( &logger, "- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -\r\n" );
    log_printf( &logger, "\r\n");
    Delay_ms ( 1000 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Mpu9Dof

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

6DOF IMU 13 Click

0

6DOF IMU 13 Click is a compact add-on board that contains an eCompass that consists of a 3-axis linear accelerometer and a 3-axis magnetic field sensor. This board features the MC6470, an accelerometer and magnetometer for a 6 DoF (6 Degrees of Freedom) sensor solution, from mCube Inc.

[Learn More]

Thermo 18 Click

0

Thermo 18 Click is a compact add-on board that provides an accurate temperature measurement. This board features the WSEN-TIDS, a silicon-based, high-precision digital temperature sensor with embedded analog and digital signal processing unit from Würth Elektronik.

[Learn More]

AnyNet 3G-AA Click

0

AnyNet 3G-AA Click is a cellular to AWS gateway device, which provides developers with the complete solution for various IoT applications, by using the AWS IoT and Cloud Storage services for the data storage, analyzing and processing. AnyNet Click board™ provides a secure connection with the AWS over the air (OTA), by utilizing the Quectel UG95-AA 3G module, offering UMTS/HSPA coverage for the North American region, Eseye ES4623 embedded SIM card, that can work with all the major cellular operators within the NA region. The AnyNet 3G Click can be used as an AWS IoT button with almost no configuration.

[Learn More]