TOP Contributors

  1. MIKROE (2762 codes)
  2. Alcides Ramos (374 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139251 times)
  2. FAT32 Library (71749 times)
  3. Network Ethernet Library (57120 times)
  4. USB Device Library (47430 times)
  5. Network WiFi Library (43082 times)
  6. FT800 Library (42403 times)
  7. GSM click (29835 times)
  8. mikroSDK (28077 times)
  9. PID Library (26885 times)
  10. microSD click (26198 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Pressure 11 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.19

mikroSDK Library: 2.0.0.0

Category: Pressure

Downloaded: 197 times

Not followed.

License: MIT license  

This sensor offers many benefits, including low power consumption, high resolution of the pressure data, embedded thermal compensation, FIFO buffer with several operating modes, temperature measurement, etc.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Pressure 11 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Pressure 11 Click" changes.

Do you want to report abuse regarding "Pressure 11 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Pressure 11 Click

Pressure 11 Click is a digital barometer on a Click board™. Pressure 11 is equipped with the LPS33HW, an absolute piezoresistive pressure sensor, manufactured using a proprietary technology.

pressure11_click.png

Click Product page

Click library

  • Author : MikroE Team
  • Date : May 2020.
  • Type : I2C/SPI type

Software Support

We provide a library for the Pressure11 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Pressure11 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void pressure11_cfg_setup ( pressure11_cfg_t *cfg );

  • Initialization function.

    PRESSURE11_RETVAL pressure11_init ( pressure11_t ctx, pressure11_cfg_t cfg );

Example key functions :

  • Functions for cheking commuincation with the chip and checking its ID.

    uint8_t pressure11_check_id ( pressure11_t *ctx );

  • Functions for temperature reading.

    float pressure11_get_temperature ( pressure11_t *ctx );

  • Functions for pressure reading.

    float pressure11_get_pressure ( pressure11_t *ctx );

Examples Description

This sensor offers many benefits, including low power consumption, high resolution of the pressure data, embedded thermal compensation, FIFO buffer with several operating modes, temperature measurement, etc.

The demo application is composed of two sections :

Application Init

Initializes SPI driver and checks chip ID


void application_init ( void )
{
    log_cfg_t log_cfg;
    pressure11_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    pressure11_cfg_setup( &cfg );
    PRESSURE11_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    pressure11_init( &pressure11, &cfg );
}

Application Task

Reads Pressure and Temperature values and displays it on UART LOG


void application_task ( void )
{
    float temperature;
    float pressure;

    temperature = pressure11_get_temperature( &pressure11 );
    log_printf( &logger, "Temperature: %.2f \r\n", temperature );
    log_printf( &logger, " C" );

    pressure = pressure11_get_pressure( &pressure11 );
    log_printf( &logger, "Pressure:  %.2f \r\n", pressure );
    log_printf( &logger, "   hPa (mBar)" );

    Delay_ms ( 500 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Pressure11

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

MRAM 2 Click

0

MRAM 2 Click is a compact add-on board for applications that must store and retrieve data and programs quickly using a small number of pins.

[Learn More]

3D Hall 4 Click

0

3D Hall 4 Click is a compact add-on board that can detect the strength of a magnetic field in all three dimensions. This board features the SENM3Dx, a 3D Hall magnetic sensor from SENIS. It is a CMOS-integrated magnetic field sensor that allows the acquisition of all three magnetic field components at the same time and in the same spot. The sensor is equipped with on-chip EPROM to hold initialization, calibration data, and other settings and definitions.

[Learn More]

NTAG 5 Link Click

0

NTAG 5 Link Click is a compact add-on board that acts as a bridge between an NFC-enabled device and any I2C slave, such as a sensor or external memory. This board features the NTA5332, a highly integrated NFC IC which creates a secure standard-based link from the device to the cloud from NXP Semiconductors. Based on the NTAG 5 switch and operating at 13.56MHz, the NTA5332 represents an NFC Forum-compliant contactless tag that can be read and written by an NFC-enabled device at close range and by an ISO/IEC 15693-enabled industrial reader over a more extended range. It also incorporates an I2C interface with an I2C master features and AES mutual authentication, SRAM memory, and energy harvesting possibility, which means it can supply power to other components in the system.

[Learn More]