TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (403 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (132 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140976 times)
  2. FAT32 Library (73517 times)
  3. Network Ethernet Library (58325 times)
  4. USB Device Library (48512 times)
  5. Network WiFi Library (44135 times)
  6. FT800 Library (43691 times)
  7. GSM click (30547 times)
  8. mikroSDK (29296 times)
  9. PID Library (27220 times)
  10. microSD click (26931 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Vibro Motor Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: Haptic

Downloaded: 206 times

Not followed.

License: MIT license  

Vibro Motor Click features a compact size Eccentric Rotating Mass (ERM) motor, labeled as C1026B002F. This type of motor is often used for haptic feedback on many small handheld devices, such as the cellphones, pagers, RFID scanners and similar devices. This motor contains a small eccentric weight on its rotor, so while rotating it also produces vibration effect. This kind of motors is sometimes referred to as coin motors, due to its shape.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Vibro Motor Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Vibro Motor Click" changes.

Do you want to report abuse regarding "Vibro Motor Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Vibro Motor Click

Vibro Motor Click features a compact size Eccentric Rotating Mass (ERM) motor, labeled as C1026B002F. This type of motor is often used for haptic feedback on many small handheld devices, such as the cellphones, pagers, RFID scanners and similar devices. This motor contains a small eccentric weight on its rotor, so while rotating it also produces vibration effect. This kind of motors is sometimes referred to as coin motors, due to its shape.

vibromotor_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Jun 2021.
  • Type : PWM type

Software Support

We provide a library for the VibroMotor Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for VibroMotor Click driver.

Standard key functions :

  • vibromotor_cfg_setup Config Object Initialization function.

    void vibromotor_cfg_setup ( vibromotor_cfg_t *cfg );
  • vibromotor_init Initialization function.

    err_t vibromotor_init ( vibromotor_t *ctx, vibromotor_cfg_t *cfg );

Example key functions :

  • vibromotor_set_duty_cycle This function sets the PWM duty cycle in percentages ( Range[ 0..1 ] ).

    err_t vibromotor_set_duty_cycle ( vibromotor_t *ctx, float duty_cycle );
  • vibromotor_pwm_stop This function stops the PWM moudle output.

    err_t vibromotor_pwm_stop ( vibromotor_t *ctx );
  • vibromotor_pwm_start This function starts the PWM moudle output.

    err_t vibromotor_pwm_start ( vibromotor_t *ctx );

Example Description

This application contorl the speed of vibro motor.

The demo application is composed of two sections :

Application Init

Configures PWM to 5kHz frequency, calculates maximum duty ratio and starts PWM with duty ratio value 0.


void application_init ( void ) {
    log_cfg_t log_cfg;  /**< Logger config object. */
    vibromotor_cfg_t vibromotor_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.

    vibromotor_cfg_setup( &vibromotor_cfg );
    VIBROMOTOR_MAP_MIKROBUS( vibromotor_cfg, MIKROBUS_1 );
    err_t init_flag  = vibromotor_init( &vibromotor, &vibromotor_cfg );
    if ( PWM_ERROR == init_flag ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    vibromotor_set_duty_cycle ( &vibromotor, 0.0 );
    vibromotor_pwm_start( &vibromotor );

    log_info( &logger, " Application Task " );
}

Application Task

Allows user to enter desired command to control Vibro Motor Click board.


void application_task ( void ) {
    static int8_t duty_cnt = 1;
    static int8_t duty_inc = 1;
    float duty = duty_cnt / 10.0;

    vibromotor_set_duty_cycle ( &vibromotor, duty );
    log_printf( &logger, "> Duty: %d%%\r\n", ( uint16_t )( duty_cnt * 10 ) );

    Delay_ms ( 500 );

    if ( 10 == duty_cnt ) {
        duty_inc = -1;
    } else if ( 0 == duty_cnt ) {
        duty_inc = 1;
    }
    duty_cnt += duty_inc;
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.VibroMotor

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

EEPROM 6 Click

0

EEPROM 6 Click is a compact add-on board that contains a serial EEPROM memory that operates from the 1-Wire interface. This board features the DS28EC20, a 20480-bit EEPROM organized as 80 memory pages of 256 bits each from Analog Devices. As a specific feature, blocks of eight memory pages can be write-protected or put in “EPROM-Emulation” Mode, where bits can only be changed from a 1 to a 0 state. It communicates with MCU at 15.4kbps or 90kbps over the 1-Wire protocol and has a 64-bit registration number that ensures error-free device selection.

[Learn More]

RTC 10 Click

0

RTC 10 Click is a real-time clock module which has an extremely low power consumption, allowing it to be used with a single button cell battery, for an extended period of time.

[Learn More]

H-Bridge 16 Click

0

H-Bridge 16 Click is a compact add-on board with an H-Bridge gate driver, also known as a full-bridge pre-driver. This board features the DRV8262, a dual H-Bridge motor driver from Texas Instruments. The motor driver is designed for a variety of industrial applications and can drive one or two brushed DC motors, one stepper motor, and one or two thermoelectric coolers (TEC). It can operate in a wide supply voltage range of 4.5V to 65V.

[Learn More]