TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (392 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (123 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140530 times)
  2. FAT32 Library (73021 times)
  3. Network Ethernet Library (58014 times)
  4. USB Device Library (48211 times)
  5. Network WiFi Library (43821 times)
  6. FT800 Library (43291 times)
  7. GSM click (30341 times)
  8. mikroSDK (28983 times)
  9. PID Library (27106 times)
  10. microSD click (26702 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Led ring R Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.18

mikroSDK Library: 2.0.0.0

Category: LED matrix

Downloaded: 300 times

Not followed.

License: MIT license  

This library contains API for LedringR Click driver.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Led ring R Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Led ring R Click" changes.

Do you want to report abuse regarding "Led ring R Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog

Led ring R Click

LED ring R Click is a mikroBUS™ add-on board with a ring of 32 red LEDs driven by four 74HC595 serial-in, parallel-out shift registers.

ledringr_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : May 2020.
  • Type : SPI type

Software Support

We provide a library for the LedringR Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for LedringR Click driver.

Standard key functions :

  • Config Object Initialization function.

    void ledringr_cfg_setup ( ledringr_cfg_t *cfg );

  • Initialization function.

    LEDRINGR_RETVAL ledringr_init ( ledringr_t ctx, ledringr_cfg_t cfg );

  • Generic transfer function.

    void ledringr_generic_transfer ( ledringr_t ctx, spi_master_transfer_data_t block );

Example key functions :

  • Generic write function.

    void ledringr_write_data ( ledringr_t *ctx, uint32_t data_to_write );

  • Turn On LED by position.

    void ledringr_turn_on_led ( ledringr_t *ctx, uint8_t led_position );

  • Set led.

    void ledringr_led_ring_set ( ledringr_t *ctx );

Examples Description

LED ring R Click is a mikroBUS™ add-on board with a ring of 32 red LEDs driven.

The demo application is composed of two sections :

Application Init

Initializes SPI driver and performs device configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;
    ledringr_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    ledringr_cfg_setup( &cfg );
    LEDRINGR_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    ledringr_init( &ledringr, &cfg );
}

Application Task

Show functionality of Led_Ring_R Click, rotating and turn on/off led's, using the SPI interface.


void application_task ( void )
{
    uint32_t ring_led_on = 0x00000001;
    uint8_t ring_led_counter;
    uint8_t number_led;

    ledringr_led_ring_set( &ledringr );

    for ( ring_led_counter = 32; ring_led_counter > 0; ring_led_counter--)
    {
        ledringr_turn_on_led( &ledringr, ring_led_counter );
        Delay_100ms( );
    }

    Delay_100ms( );

    while ( ring_led_on < 0xFFFFFFFF )
    {
        ledringr_write_data( &ledringr, ring_led_on );
        ring_led_on = ring_led_on | (ring_led_on << 1);
        Delay_100ms( );
    }
    ledringr_write_data( &ledringr, ring_led_on );

    while ( ring_led_on > 0x00000001 )
    {
        ledringr_write_data( &ledringr, ring_led_on );
        ring_led_on = ring_led_on >> 1;
        Delay_100ms( );
    }
    ledringr_write_data( &ledringr, ring_led_on );

    Delay_100ms( );

    ring_led_on = 0x11111111;
    for ( ring_led_counter = 0; ring_led_counter < 32; ring_led_counter++ )
    {
        ledringr_write_data( &ledringr, ring_led_on );

        ring_led_on *= 2;

        if ( ring_led_on == 0x88888888 )
        {
            ring_led_on = 0x11111111;
        }

        Delay_100ms( );
    }

    for ( ring_led_counter = 0; ring_led_counter < 16; ring_led_counter++ )
    {
        ledringr_write_data( &ledringr, 0xAAAAAAAA );
        Delay_100ms( );

        ledringr_write_data( &ledringr, 0x55555555 );
        Delay_100ms( );
    }

    ledringr_led_ring_reset( &ledringr );

    Delay_1sec( );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.LedringR

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

DAC 9 Click

0

DAC 9 Click is a compact add-on board that contains a fully-featured, highly accurate digital-to-analog converter. This board features the DAC80501, a 16-bit voltage-output digital-to-analog converter with precision internal reference from Texas Instruments. It supports both I2C and SPI serial interface and offers a linearity of < 1 LSB. It also includes a 2.5V internal reference, giving full-scale output voltage ranges of 1.25V, 2.5V, or 5V, incorporate a Power-On Reset function, consume a low current of 1mA, and include a Power-Down feature that reduces current consumption to typically 15μA at 5V.

[Learn More]

MUX 2 click

5

MUX 2 click is a Click board that switches one of the eight inputs to one output. It employs the MUX508, a modern CMOS analog multiplexing integrated circuit, produced by Texas Instruments.

[Learn More]

mikroBootloader

10

To make it as simple as possible to program MCUs on our dev boards, most of them come with a preloaded USB-HID bootloader. While the bootloader firmware is specific to each chip, the PC utility for loading your HEX file to the target microcontroller is universal. It’s done in four steps and takes less than 20 seconds.

[Learn More]