TOP Contributors

  1. MIKROE (2762 codes)
  2. Alcides Ramos (374 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139251 times)
  2. FAT32 Library (71749 times)
  3. Network Ethernet Library (57120 times)
  4. USB Device Library (47430 times)
  5. Network WiFi Library (43082 times)
  6. FT800 Library (42403 times)
  7. GSM click (29835 times)
  8. mikroSDK (28077 times)
  9. PID Library (26885 times)
  10. microSD click (26198 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Semper Flash Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.24

mikroSDK Library: 2.0.0.0

Category: FLASH

Downloaded: 287 times

Not followed.

License: MIT license  

The Semper Flash Click is a Click board™ which features the S25HS512T, a perfect solution for the mass storage option in various embedded applications. With fast performance being one of its key features, Semper Flash Click can also be used for the code shadowing, execute-in-place (XIP), data logging and data storage.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Semper Flash Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Semper Flash Click" changes.

Do you want to report abuse regarding "Semper Flash Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Semper Flash Click

The Semper Flash Click is a Click board™ which features the S25HS512T, a perfect solution for the mass storage option in various embedded applications. With fast performance being one of its key features, Semper Flash Click can also be used for the code shadowing, execute-in-place (XIP), data logging and data storage.

semperflash_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : May 2020.
  • Type : SPI type

Software Support

We provide a library for the SemperFlash Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for SemperFlash Click driver.

Standard key functions :

  • Config Object Initialization function.

    void semperflash_cfg_setup ( semperflash_cfg_t *cfg );

  • Initialization function.

    SEMPERFLASH_RETVAL semperflash_init ( semperflash_t ctx, semperflash_cfg_t cfg );

  • Click Default Configuration function.

    void semperflash_default_cfg ( semperflash_t *ctx );

Example key functions :

  • This function writes data to the flash memory.

    uint8_t semperflash_write_memory ( semperflash_t ctx, uint32_t addr, uint8_t data_buf, uint16_t buf_size );

  • This function reads data from the flash memory.

    uint8_t semperflash_read_memory (
    semperflash_t ctx, uint32_t addr, uint8_t data_buf, uint16_t buf_size );

  • This function erases data from the flash memory.

    void semperflash_erase_memory ( semperflash_t *ctx, uint32_t addr );

Examples Description

This example showcases how to initialize and use the Semper Flash Click. The Click is a 512 Mbit SPI Flash memory module. Data can be stored in and read from the flash memory. There's also the option of erasing it's contents. Here's how to do it.

The demo application is composed of two sections :

Application Init

This function initializes and configures the Click and logger modules. Additional con- figuring is done in the default_cfg(...) function. The device ID should appear in the UART console if the setup finishes successfully.


void application_init ( void )
{
    log_cfg_t log_cfg;
    semperflash_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );
    Delay_ms ( 100 );

    //  Click initialization.

    semperflash_cfg_setup( &cfg );
    SEMPERFLASH_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    semperflash_init( &semperflash, &cfg );
    semperflash_default_cfg( &semperflash );
    id_check( );
    Delay_ms ( 500 );
}

Application Task

This function first erases the contents of the flash memory and then writes, reads and prints two strings in the UART console. It does so every 2 seconds.


void application_task ( void )
{
    char write_data_com[ 7 ] = "MikroE";
    char write_data_clk[ 13 ] = "Semper Flash";
    char read_buf_data[ 13 ] = { 0 };

    semperflash_send_cmd( &semperflash, SEMPERFLASH_WRITE_ENABLE );
    semperflash_erase_memory( &semperflash, ADRESS_MEMORY );

    if ( COMPANY_FLAG == txt_flag )
    {
       semperflash_send_cmd( &semperflash, SEMPERFLASH_WRITE_ENABLE );
       error_handler( semperflash_write_memory( &semperflash, ADRESS_MEMORY, write_data_com, 6 ) );
       error_handler( semperflash_read_memory( &semperflash, ADRESS_MEMORY, read_buf_data, 6 ) );
       log_printf( &logger, "%s\r\n", read_buf_data );
       txt_flag = CLICK_FLAG;       
    }
    else if ( CLICK_FLAG == txt_flag )
    {
       semperflash_send_cmd( &semperflash, SEMPERFLASH_WRITE_ENABLE );
       error_handler( semperflash_write_memory( &semperflash, ADRESS_MEMORY, write_data_clk, 12 ) );
       error_handler( semperflash_read_memory( &semperflash, ADRESS_MEMORY, read_buf_data, 12 ) );
       log_printf( &logger, "%s\r\n", read_buf_data );
       txt_flag = COMPANY_FLAG;
    }

    log_printf( &logger, "....................\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.SemperFlash

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Hall Current 7 Click

0

Hall Current 7 Click is a compact add-on board that provides economical and precise solutions for AC or DC current sensing. This board features the ACS770, a thermally enhanced, fully integrated, Hall effect-based high precision linear current sensor with 100µΩ current conductor from Allegro MicroSystems. Applied current flows directly into the integrated conductor generating a magnetic field, and an integrated low-hysteresis core concentrates the magnetic field sensed by the Hall element with a typical accuracy of ±1% and 120 kHz bandwidth.

[Learn More]

RTC 21 Click

0

RTC 21 Click is a compact add-on board that accurately keeps the time of the day. This board features the PT7C4311, an I2C-configurable real-time clock module with programmable square-wave output from Diodes Incorporated. The PT7C4311 includes time and calendar functions providing various information such as hour, minute, second, day, date, month, year, and century. It operates in a 24-hour format indicator, has automatic leap year compensation, and low power consumption, allowing it to be used with a single button cell battery for an extended period.

[Learn More]

WiFly click - Example

5

WiFly click is the simplest way to add WiFi to your devices. This click features the well-known RN131 802.11 b/g Wi-Fi module from Microchip. The click communicates with the MCU over UART and runs on a 3.3V power supply. It has an onboard ceramic chip antenna and a connector for an external antenna.

[Learn More]