We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.25
mikroSDK Library: 2.0.0.0
Category: GPS/GNSS
Downloaded: 373 times
Not followed.
License: MIT license
GPS Click is a compact solution for adding GPS functionality to your device. It carries the u-blox LEA-6S high-performance position engine.
Do you want to subscribe in order to receive notifications regarding "GPS Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "GPS Click" changes.
Do you want to report abuse regarding "GPS Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
4039_gps_click.zip [520.10KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
GPS Click is a compact solution for adding GPS functionality to your device. It carries the u-blox LEA-6S high-performance position engine.
We provide a library for the Gps Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.
This library contains API for Gps Click driver.
Config Object Initialization function.
void gps_cfg_setup ( gps_cfg_t *cfg );
Initialization function.
GPS_RETVAL gps_init ( gps_t ctx, gps_cfg_t cfg );
Generic parser function.
gps_error_t gps_generic_parser ( char rsp, uint8_t command, uint8_t element, char parser_buf );
Generic read function.
int32_t gps_generic_read ( gps_t ctx, char data_buf, uint16_t max_len );
Wake-up module.
void gps_module_wakeup ( gps_t *ctx );
This example reads and processes data from GPS clicks.
The demo application is composed of two sections :
Initializes driver and wake-up module.
void application_init ( void )
{
log_cfg_t log_cfg;
gps_cfg_t cfg;
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, "---- Application Init ----" );
// Click initialization.
gps_cfg_setup( &cfg );
GPS_MAP_MIKROBUS( cfg, MIKROBUS_1 );
gps_init( &gps, &cfg );
gps_module_wakeup( &gps );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
Reads the received data and parses it.
void application_task ( void )
{
gps_process( );
parser_application( current_parser_buf );
}
The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.
Other mikroE Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.