TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (400 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (128 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140751 times)
  2. FAT32 Library (73311 times)
  3. Network Ethernet Library (58182 times)
  4. USB Device Library (48371 times)
  5. Network WiFi Library (43955 times)
  6. FT800 Library (43508 times)
  7. GSM click (30443 times)
  8. mikroSDK (29133 times)
  9. PID Library (27152 times)
  10. microSD click (26827 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

VREG Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.13

mikroSDK Library: 2.0.0.0

Category: Linear

Downloaded: 206 times

Not followed.

License: MIT license  

This library contains API for Vreg Click driver.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "VREG Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "VREG Click" changes.

Do you want to report abuse regarding "VREG Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


VREG Click

VReg Click is a digitally controlled DC Voltage regulator in mikroBUS™ form factor.

vreg_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jun 2020.
  • Type : SPI type

Software Support

We provide a library for the Vreg Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Vreg Click driver.

Standard key functions :

  • Config Object Initialization function.

    void vreg_cfg_setup ( vreg_cfg_t *cfg );

  • Initialization function.

    VREG_RETVAL vreg_init ( vreg_t ctx, vreg_cfg_t cfg );

Example key functions :

  • Get ADC value function.

    uint16_t vreg_get_adc ( vreg_t *ctx, uint8_t channel );

  • Set output voltage function.

    void vreg_set_out_voltage ( vreg_t *ctx, uint16_t value_dac );

  • Set output voltage procentage function.

    void vreg_set_output_voltage_procentage ( vreg_t *ctx, uint8_t value_dac_pct );

Examples Description

This is an example that demonstrates the use of VREG Click board.

The demo application is composed of two sections :

Application Init

Initializes driver and sets output voltage.


void application_init ( void )
{
    log_cfg_t log_cfg;
    vreg_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    vreg_cfg_setup( &cfg );
    VREG_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    vreg_init( &vreg, &cfg );

    vreg_stop_measuring( &vreg );
    log_printf( &logger, " Stop Measuring \r\n" );
    Delay_1sec( );

    log_printf( &logger, " Set Out Voltage \r\n" );
    vreg_set_out_voltage( &vreg, 600 );
    Delay_1sec( );

    log_printf( &logger, " Start Measuring \r\n" );
    vreg_start_measuring( &vreg );
    Delay_1sec( );
}

Application Task

Reads ADC data from all 3 channels, converts those values to voltage and displays the results on USB UART.


void application_task ( void )
{
    ch_reg = vreg_get_adc( &vreg, VREG_CHANNEL_0 );
    voltage = ch_reg / 182.0;

    log_printf( &logger, " CH Reg  : %.2f V\r\n", voltage );

    Delay_10ms( );

    ch_in = vreg_get_adc( &vreg, VREG_CHANNEL_2 );
    voltage = ch_in / 182.0;

    log_printf( &logger, " CH In   : %.2f V\r\n", voltage );

    Delay_10ms( );

    ch_out = vreg_get_adc( &vreg, VREG_CHANNEL_1 );
    voltage = ch_out / 182.0;

    log_printf( &logger, " CH Out  : %.2f V\r\n", voltage );

    Delay_1sec( );
    log_printf( &logger, " ---------------------- \r\n" );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Vreg

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

LED Driver 2 Click

0

LED driver 2 Click carries the MCP1643 - LED constant current regulator, made by Microchip. It is a compact, high-efficiency, fixed frequency, synchronous step-up converter, optimized to drive one LED with the constant current.

[Learn More]

BUCK 7 Click

0

Buck 7 Click is a high-efficiency buck (step-down) DC-DC converter, which can provide digitally adjusted step-down voltage on its output while delivering up to 3.5A of current.

[Learn More]

ISO ADC Click

0

The ISO ADC Click is add-on board current-shunt measurement device with isolated delta-sigma modulator. This Click board™ is based on AMC1204BDWR provide a single-chip solution for measuring the small signal of a shunt resistor across an isolated barrier from Texas Instruments. ISO ADC Click contains shunt resistor, these types of resistors are typically used to sense currents in motor control inverters, green energy generation systems, and other industrial applications.

[Learn More]