TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141304 times)
  2. FAT32 Library (74107 times)
  3. Network Ethernet Library (58718 times)
  4. USB Device Library (48830 times)
  5. Network WiFi Library (44526 times)
  6. FT800 Library (44078 times)
  7. GSM click (30834 times)
  8. mikroSDK (29673 times)
  9. PID Library (27357 times)
  10. microSD click (27251 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

GPS 4 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.20

mikroSDK Library: 2.0.0.0

Category: GPS/GNSS

Downloaded: 400 times

Not followed.

License: MIT license  

GPS 4 Click carries the L70 compact GPS module from Quectel.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "GPS 4 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "GPS 4 Click" changes.

Do you want to report abuse regarding "GPS 4 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


GPS4 Click

GPS 4 Click carries the L70 compact GPS module from Quectel.

gps4_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : apr 2020.
  • Type : UART GPS/GNSS type

Software Support

We provide a library for the Gps4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Gps4 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void gps4_cfg_setup ( gps4_cfg_t *cfg );

  • Initialization function.

    GPS4_RETVAL gps4_init ( gps4_t ctx, gps4_cfg_t cfg );

Example key functions :

  • Generic parser function.

    gps4_error_t gps4_generic_parser ( char rsp, uint8_t command, uint8_t element, char parser_buf );

  • Generic read function.

    int32_t gps4_generic_read ( gps4_t ctx, char data_buf, uint16_t max_len );

  • Wake-up module.

    void gps4_module_wakeup ( gps4_t *ctx );

Examples Description

This example reads and processes data from GPS4 clicks.

The demo application is composed of two sections :

Application Init

Initializes driver and wake-up module.


void application_init ( void )
{
    log_cfg_t log_cfg;
    gps4_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    gps4_cfg_setup( &cfg );
    GPS4_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    gps4_init( &gps4, &cfg );

    gps4_module_wakeup( &gps4 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

Application Task

Reads the received data and parses it.


void application_task ( void )
{
    gps4_process(  );
    parser_application( current_parser_buf );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Gps4

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Current Limit 6 Click

0

Current Limit 6 Click is a compact add-on board representing a current-limiting solution. This board features the MAX17608, adjustable overvoltage, and overcurrent protection device from Maxim Integrated, now part of Analog Devices. This Click board™ is ideal for protecting systems with the flexible input overvoltage protection range from 4.5V to 60V, and the adjustable input undervoltage protection range is 4.5V to 59V. Also, the maximum current limit is 1A and can be programmed through a digital potentiometer MAX5401. When the device current reaches the programmed threshold, the device prevents further current increases by modulating the FET resistance.

[Learn More]

Smart DOF Click

0

SmartDOF Click features a highly advanced integrated system-in-package (SiP) solution with three different sensors on-chip: triaxial accelerometer, magnetometer, and triaxial gyroscope are all integrated on the same die, along with the powerful 32-bit ARM® Cortex®-M0+ MCU. Thanks to the integrated MCU, the BN080 SiP provides extensive signal processing.

[Learn More]

Pollution click

5

Pollution click has high sensitivity to organic gases such as methanal, benzene, alcohol, toluene, etc. The click carries the WSP2110 VOC gas sensor with the detection range of 1~50ppm. Pollution click is designed to run on 5V power supply. It communicates with the target MCU over AN and RST pin on the mikroBUS line.

[Learn More]