We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.18
mikroSDK Library: 2.0.0.0
Category: LTE IoT
Downloaded: 230 times
Not followed.
License: MIT license
NB IoT Click is a Click board™ that allows LTE Cat NB1 connectivity by utilizing Quectel BC95-G, a specialized multi-band IoT module with very low power requirements and compact form factor, making it perfectly suited for various IoT-based applications.
Do you want to subscribe in order to receive notifications regarding "NB IoT Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "NB IoT Click" changes.
Do you want to report abuse regarding "NB IoT Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
4049_nb_iot_click.zip [619.49KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
NB IoT Click is a Click board™ that allows LTE Cat NB1 connectivity by utilizing Quectel BC95-G, a specialized multi-band IoT module with very low power requirements and compact form factor, making it perfectly suited for various IoT-based applications.
We provide a library for the NbIot Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.
This library contains API for NbIot Click driver.
NB IoT configuration object setup function.
void nbiot_cfg_setup ( nbiot_cfg_t *cfg );
NB IoT initialization function.
err_t nbiot_init ( nbiot_t ctx, nbiot_cfg_t cfg );
Send command function.
void nbiot_send_cmd ( nbiot_t ctx, char cmd );
NB IoT module power on.
void nbiot_power_on ( nbiot_t *ctx );
NB IoT data writing function.
err_t nbiot_generic_write ( nbiot_t ctx, char data_buf, uint16_t len );
This example reads and processes data from NB IoT clicks.
The demo application is composed of two sections :
Initializes driver, wake-up module and sets default configuration for connecting device to network.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
nbiot_cfg_t nbiot_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
Delay_ms ( 1000 );
// Click initialization.
nbiot_cfg_setup( &nbiot_cfg );
NBIOT_MAP_MIKROBUS( nbiot_cfg, MIKROBUS_1 );
err_t init_flag = nbiot_init( &nbiot, &nbiot_cfg );
if ( init_flag == UART_ERROR )
{
log_error( &logger, " Application Init Error. " );
log_info( &logger, " Please, run program again... " );
for ( ; ; );
}
log_info( &logger, " Power on device... " );
nbiot_power_on( &nbiot );
// dummy read
app_error_flag = nbiot_rsp_check( );
nbiot_error_check( app_error_flag );
// AT
nbiot_send_cmd( &nbiot, NBIOT_CMD_AT );
app_error_flag = nbiot_rsp_check( );
nbiot_error_check( app_error_flag );
Delay_ms ( 500 );
// ATI - product information
nbiot_send_cmd( &nbiot, NBIOT_CMD_ATI );
app_error_flag = nbiot_rsp_check( );
nbiot_error_check( app_error_flag );
Delay_ms ( 500 );
// CGMR - firmware version
nbiot_send_cmd( &nbiot, NBIOT_CMD_CGMR );
app_error_flag = nbiot_rsp_check( );
nbiot_error_check( app_error_flag );
Delay_ms ( 1000 );
// COPS - deregister from network
nbiot_send_cmd_with_parameter( &nbiot, NBIOT_CMD_COPS, "2" );
app_error_flag = nbiot_rsp_check( );
nbiot_error_check( app_error_flag );
Delay_ms ( 1000 );
// CFUN - full funtionality
nbiot_send_cmd_with_parameter( &nbiot, NBIOT_CMD_CFUN, "1" );
app_error_flag = nbiot_rsp_check( );
nbiot_error_check( app_error_flag );
Delay_ms ( 500 );
// COPS - automatic mode
nbiot_send_cmd_with_parameter( &nbiot, NBIOT_CMD_COPS, "0" );
app_error_flag = nbiot_rsp_check( );
nbiot_error_check( app_error_flag );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
// CEREG - network registration status
nbiot_send_cmd_with_parameter( &nbiot, NBIOT_CMD_CEREG, "2" );
app_error_flag = nbiot_rsp_check( );
nbiot_error_check( app_error_flag );
Delay_ms ( 500 );
// CIMI - request IMSI
nbiot_send_cmd( &nbiot, NBIOT_CMD_CIMI );
app_error_flag = nbiot_rsp_check( );
nbiot_error_check( app_error_flag );
Delay_ms ( 500 );
app_buf_len = 0;
app_buf_cnt = 0;
app_connection_status = WAIT_FOR_CONNECTION;
log_info( &logger, " Application Task " );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
Waits for device to connect to network and then checks the signal quality every 5 seconds. All data is being logged on USB UART where you can track their changes.
void application_task ( void )
{
if ( app_connection_status == WAIT_FOR_CONNECTION )
{
// CGATT - request IMSI
nbiot_send_cmd_check( &nbiot, NBIOT_CMD_CGATT );
app_error_flag = nbiot_rsp_check( );
nbiot_error_check( app_error_flag );
Delay_ms ( 500 );
// CEREG - network registration status
nbiot_send_cmd_check( &nbiot, NBIOT_CMD_CEREG );
app_error_flag = nbiot_rsp_check( );
nbiot_error_check( app_error_flag );
Delay_ms ( 500 );
// CSQ - signal quality
nbiot_send_cmd( &nbiot, NBIOT_CMD_CSQ );
app_error_flag = nbiot_rsp_check( );
nbiot_error_check( app_error_flag );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
else
{
log_info( &logger, "CONNECTED TO NETWORK" );
log_info( &logger, "CHECKING SIGNAL QUALITY" );
nbiot_send_cmd( &nbiot, NBIOT_CMD_CSQ );
app_error_flag = nbiot_rsp_check( );
nbiot_error_check( app_error_flag );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
}
In order for the example to work, a valid SIM card needs to be entered.
The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.
Other mikroE Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.