TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (385 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139845 times)
  2. FAT32 Library (72209 times)
  3. Network Ethernet Library (57392 times)
  4. USB Device Library (47740 times)
  5. Network WiFi Library (43364 times)
  6. FT800 Library (42700 times)
  7. GSM click (29980 times)
  8. mikroSDK (28440 times)
  9. PID Library (26989 times)
  10. microSD click (26398 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

DC Motor 4 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.20

mikroSDK Library: 2.0.0.0

Category: Brushed

Downloaded: 228 times

Not followed.

License: MIT license  

This library contains API for DcMotor4 Click driver.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "DC Motor 4 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "DC Motor 4 Click" changes.

Do you want to report abuse regarding "DC Motor 4 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


DC Motor 4 Click

DC MOTOR 4 Click is capable of driving motors with a supply voltage from 4.5V to 36V. It carries the MAX14870 motor driver from Maxim Integrated.

dcmotor4_click.png

Click Product page


Click library

  • Author : Nikola Peric
  • Date : Feb 2022.
  • Type : PWM type

Software Support

We provide a library for the DcMotor4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for DcMotor4 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void dcmotor4_cfg_setup ( dcmotor4_cfg_t *cfg );

  • Initialization function.

    DCMOTOR4_RETVAL dcmotor4_init ( dcmotor4_t ctx, dcmotor4_cfg_t cfg );

Example key functions :

  • Generic sets PWM duty cycle.

    void dcmotor4_set_duty_cycle ( dcmotor4_t *ctx, pwm_data_t duty_cycle );

  • Stop PWM module.

    void dcmotor4_pwm_stop ( dcmotor4_t *ctx );

  • Start PWM module.

    void dcmotor4_pwm_start ( dcmotor4_t *ctx );

Examples Description

This library contains API for the DC Motor 4 Click driver. Application change the speed and direction.

The demo application is composed of two sections :

Application Init

Initialization driver enable's - GPIO, set the direction-control of the motor forward movement, PWM initialization, set PWM duty cycle and PWM frequency, enable the motor, start PWM.


void application_init ( )
{
    log_cfg_t log_cfg;
    dcmotor4_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );
    Delay_ms ( 100 );

    //  Click initialization.

    dcmotor4_cfg_setup( &cfg );
    DCMOTOR4_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    Delay_ms ( 100 );
    dcmotor4_init( &dcmotor4, &cfg );
    dcmotor4_pwm_start( &dcmotor4 );
}

Application Task

This is an example that demonstrates the use of the DC Motor 4 Click board. DC Motor 4 Click communicates with register via PWM interface. It shows moving in the Clockwise direction from slow to fast speed and from fast to slow speed, then rotating Counter Clockwise, Results are being sent to the Usart Terminal where you can track their changes.


void application_task ( )
{    
    static int8_t duty_cnt = 1;
    static int8_t duty_inc = 1;
    float duty = duty_cnt / 10.0;

    if ( dcmotor_direction == 1 )
    {
        dcmotor4_run_clockwise ( &dcmotor4 );
        log_printf( &logger, "> CLOCKWISE <\r\n" );
    }
    else
    {
        dcmotor4_run_counter_clockwise ( &dcmotor4 );
        log_printf( &logger, "> COUNTER CLOCKWISE <\r\n" );
    }

    dcmotor4_set_duty_cycle ( &dcmotor4, duty );
    dcmotor4_enable_motor ( &dcmotor4 );

    log_printf( &logger, "> Duty: %d%%\r\n", ( uint16_t )( duty_cnt * 10 ) );
    Delay_ms ( 500 );

    if ( 10 == duty_cnt ) 
    {
        duty_inc = -1;
    }
    else if ( 0 == duty_cnt ) 
    {
        duty_inc = 1;

        if ( dcmotor_direction == 1 )
        {
            dcmotor_direction = 0;
        }
        else
        {
            dcmotor_direction = 1;
        }
    }
    duty_cnt += duty_inc;

    dcmotor4_disable_motor ( &dcmotor4 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.DcMotor4

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Air quality 9 Click

0

Air quality 9 Click is a compact add-on board containing a best-in-class air-quality sensing solution. This board features the ENS160, a digital multi-gas sensor solution based on metal oxide (MOX) technology with four MOx sensor elements from ScioSense. Each sensor element has independent hotplate control to detect a wide range of gases. The ENS160 series features TrueVOCâ„¢ air quality detection and supports intelligent algorithms, which calculate CO2 equivalents, TVOC, air quality index (AQI), and perform humidity and temperature compensation. This Click boardâ„¢ is interface-configurable and characterized by outstanding long-term stability and lifetime.

[Learn More]

NeoMesh 2 Click

0

NeoMesh 2 Click is a compact add-on board with a low-power, long-range transceiver, ideal for Mesh wireless networking. This board features the NC2400, a wireless Mesh network module from NeoCortec. With an additional antenna that MikroE offers connected to the module’s u.Fl connector, you can create a fully functional wireless Mesh network node that will work in the Sub-GHz frequency band of 2.4GHz. The module has a generic application layer that can be configured to suit applications.

[Learn More]

Barometer 7 Click

0

Barometer 7 Click is a compact add-on board used to measure air pressure in a specific environment. This board features the KP264XTMA1, a high-accuracy digital barometric air pressure sensor based on a capacitive principle from Infineon Technologies. The KP264XTMA1 is surface micromachined with a monolithic integrated signal conditioning circuit implemented in BiCMOS technology that converts pressure into a 10-bit digital value and sends the information via the SPI interface. It measures pressure from 40kPa up to 115kPa with an accuracy of ±1.5kPa over a wide operating temperature range.

[Learn More]